Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 34-39.doi: 10.13475/j.fzxb.20210602006

• Fiber Materials • Previous Articles     Next Articles

Microstructure and properties of polyester composite fibers with different drafting ratios

GAO Feng1, SUN Yanlin2, XIAO Shunli2, CHEN Wenxing1, LÜ Wangyang1()   

  1. 1. National Engineering Laboratory for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Tongkun Group Co., Ltd., Jiaxing, Zhejiang 314500, China
  • Received:2021-06-07 Revised:2022-02-27 Online:2022-08-15 Published:2022-08-24
  • Contact: LÜ Wangyang E-mail:luwy@zstu.edu.cn

Abstract:

In order to study the relationship between process, structure and properties of PET/PTT parallel composite fibers, the crystalline orientation properties, thermal properties, mechanical properties and crimp properties, unstretched and 2.35–3.35 times stretched elastic fibers were tested and analyzed with the two-dimensional wide angle X-ray diffractometer and differential scanning calorimeter.The crystallinity of the PET/PTT composite fiber increased from 43.04% to 45.73%, but the crystallinity of the PTT fiber remained stable, its orientation increased from 82.3% to 89.2%, indicating that the draft induction orientation reached saturation. The increase in orientation also led to the increase of the elastic modulus of PET/PTT fiber from 16.8 cN/dtex to 23.1 cN/dtex and the tensile strength from 2.9 cN/dtex to 3.5 cN/dtex, but the elongation at break decreased from 52.6% to 38.6%; the increase of the draft multiplicity led to the obvious difference of the bicomponent fiber structure. The increase in draft multiplicity led to a significant difference in the structure of the bicomponent fibers, resulting in more excellent curl properties of the composite fiber.

Key words: composite fiber, elastic fiber, poly(ethylene terephthalate), poly(trimethylene terephthalate), mechanical property, crimp property

CLC Number: 

  • TS15

Fig.1

Specific spinning process route"

Tab.1

Sample specifications"

试样编号 速度/(m·min–1) 牵伸倍
率/倍
热辊1 热辊2
Y–0
Y–1 1 450 3 400 2.35
Y–2 1 450 3 770 2.60
Y–3 1 450 4 130 2.85
Y–4 1 450 4 570 3.15
Y–5 1 450 4 860 3.35

Fig.2

DSC curves of composite fibers"

Tab.2

Crystallinity of each component in composite fibers%"

试样编号 结晶度
PET组分 PTT组分
Y–0 59.57 57.16
Y–1 43.04 40.76
Y–2 44.52 40.63
Y–3 45.23 39.81
Y–4 45.73 40.20
Y–5 44.37 40.39

Fig.3

Two-dimensional WAXD pattern of composite fibers"

Fig.4

One-dimensional WAXD intensity distribution of composite fibers"

Tab.3

Orientation of crystalline, amorphous regions and sound velocity of composite fibers"

试样编号 取向因子 声速/
(km·s–1)
晶区 非晶区
Y–0 0.759
Y–1 0.823 0.862 1.96
Y–2 0.864 0.879 2.27
Y–3 0.880 0.831 2.41
Y–4 0.892 0.836 2.16
Y–5 0.889 0.839 1.21

Tab.4

Mechanical properties of composite fibers"

试样编号 弹性模量/
(cN·dtex–1)
断裂强度/
(cN·dtex–1)
断裂伸
长率/%
Y–1 16.8 2.9 52.6
Y–2 18.4 3.1 51.5
Y–3 20.2 3.2 49.8
Y–4 20.9 3.4 43.8
Y–5 23.1 3.5 38.6

Fig.5

Crimp properties at different draft ratios. (a)Crimp shrinkage rate;(b)Crimp modulus;(c)Crimp stability"

[1] MARAW Souissi, RAMZI Khiari, WAFA Haddar, et al. Dyeing of innovative bicomponent filament fabrics (PET/PTT) by disperse dyestuffs: characterization and optimization process[J]. Processes, 2020. DOI: org/10.3390/pr8050501.
doi: org/10.3390/pr8050501
[2] CHAE Dong Wook, CHOI Kyung Rak, KIM Byoung Chul. Structural characterization and physical properties of poly(ethylene terephthalate) and poly(trimethylene terephthalate) blends: effects of blending time and blend ratio[J]. Textile Science and Engineering, 2017, 54(3):191-198.
[3] XIAO Hong, SHI Meiwu, LIU Lili, et al. The crystallinity and orientation structure and crimp properties of PET/PTT bicomponent filament[J]. Polymer Bulletin, 2013, 627(1):110-116.
[4] GUO Jing, ZHENG Nan, CHEN Yingtao. Study on influence of crimping performance of PET/PTT self-crimp yarn treated with moist heat[J]. Advanced Materials Research, 2011, 287:2547-2551.
[5] CHEN Sihai, WANG Shanyuan. Effect of thermal stimuli on physical behaviors of PET/PTT bicomponent filament[J]. Advanced Materials Research, 2010, 129:280-284.
[6] 汪一栋, 卢新宇, 王春燕, 等. PTT/PET自卷曲复合纤维的工艺性能[J]. 合成纤维, 2020, 49(4):8-10.
WANG Yidong, LU Xinyu, WANG Chunyan, et al. Study on the process performance of self-crimping PTT/PET composite fiber[J]. Synthetic Fiber in China, 2020, 49(4):8-10.
[7] HUA Tao, WONG NGO S, TANG WAI M. Study on properties of elastic core-spun yarns containing a mix of spandex and PET/PTT bi-component filament as core[J]. Textile Research Journal, 2018, 88(9):1065-1076.
doi: 10.1177/0040517517693982
[8] XIE Fang, LIANG Hao, REN Xiaojun, et al. Isothermal crystallization of PET/PTT-CNTs composites[J]. Advanced Materials Research, 2013, 750:191-194.
[9] JIA Panjin, WANG Yafei, LI Huibo, et al. Phase morphology, mechanical and thermal properties of poly(trimethylene terephthalate) and poly (ethylene terephthalate) blends[J]. Applied Mechanics and Materials, 2016, 4254:277-283.
[10] CHEN Zhenming, LIU Yan, YAO Chenguang, et al. The influences of polyethylene glycol molecular weight on thermal stability, nonisothermal crystallization behavior, and morphology of poly(trimethylene terephthalate)/poly(ethylene oxide terephthalate) copolymers[J]. Polymer Testing, 2012, 31(5):685-696.
doi: 10.1016/j.polymertesting.2012.03.008
[11] AI Xueming, LI Shihong, JIA Panjin, et al. Melting and crystallization properties of crystalline/crystalline blends of poly(trimethylene terephthalate) and poly(ethylene terephthalate)[J]. Applied Mechanics & Materials, 2014, 665:331-334.
[12] SHYR Tienwei, TUNG Chiahsin, CHENG Wensheng, et al. The crystallization rate and morphological structure of poly(ethylene/trimethylene terephthlate) copolyesters under isothermal melt-crystallization and cold-crystallization[J]. Journal of Polymer Research, 2013, 20(7):1-10.
[13] SUGENO Kousuke, KOKUBUN Satoshi, SAITO Hiromu. UCST type phase boundary and accelerated crystallization in PTT/PET blends[J]. Polymers,2020. DOI: org/10.3390/polym12112730.
doi: org/10.3390/polym12112730
[14] 高庆文, 邓倩倩, 曹宇恒, 等. 高低黏PET并列复合纤维的制备与性能[J]. 合成纤维, 2018, 47(12):9-13.
GAO Qingwen, DENG Qianqian, CAO Yuheng, et al. Preparation and properties of high and low viscosity PET side-by-side bicomponent fiber[J]. Synthetic Fiber in China, 2018, 47(12):9-13.
[15] CANETTI Maurizio, CASTELANO Maila. Structural investigation of poly(ethylene terephthalate)/poly(trimethylene terephthalate) transesterificated blends[J]. Journal of Polymer Research, 2012, 19(5):1-7.
doi: 10.1007/s10965-012-0001-8
[16] 葛陈程, 吕汪洋, 石教学, 等. 应用二维X射线衍射法测定涤纶工业丝结晶和取向行为[J]. 纺织学报, 2018, 39(3):19-25.
GE Chencheng, LÜ Wangyang, SHI Jiaoxue, et al. Measurement of crystallinity and crystal orientation of polyester industrial yarns by 2-D X-ray diffraction[J]. Journal of Textile Research, 2018, 39(3):19-25.
[17] ARASTEH Rouhollah, NADERI Ali, KAPTAN Navid, et al. Effects offiber spinning on the morphology, rheology, thermal, and mechanical properties of poly(trimethylene terephthalate)/poly(ethylene terephthalate) blends[J]. Advances in Polymer Technology, 2014, 33(S1):21443.
[18] CHEN Sihai, WANG Shanyun. Tensile and fracture behaviors of PET/PTT side-side bicomponent filament[J]. International Journal of Polymer Analysis & Characterization, 2010, 15(3):147-154.
[19] 张须臻, 杨一格, 刘少波, 等. PET/PTT并列复合纤维制备工艺对其结构与性能的影响[J]. 合成纤维, 2020, 49(3):1-6.
ZHANG Xuzhen, YANG Yige, LIU Shaobo, et al. Effect of preparation technology on structure and properties of PET/PTT composite fiber[J]. Synthetic Fiber in China, 2020, 49(3):1-6.
[20] STOJANOVIC Petar, SAVIC Marija, TRAJKOVIC Dusan, et al. The effect of false-twist texturing parameters on the structure and crimp properties of polyester yarn[J]. Chemical Industry and Chemical Engineering Quarterly, 2016, 23:411-419.
doi: 10.2298/CICEQ160720055S
[1] SUN Ying, LI Duanxin, YU Yang, CHEN Jialin, FAN Wanyue. Degumming of hemp fibers using Fenton method and fiber properties [J]. Journal of Textile Research, 2022, 43(08): 95-100.
[2] HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28.
[3] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[4] SUN Huanwei, ZHANG Heng, CUI Jingqiang, ZHU Feichao, WANG Guofeng, SU Tianyang, ZHEN Qi. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process [J]. Journal of Textile Research, 2022, 43(06): 86-93.
[5] ZHAO Bobo, WANG Liang, LI Jingyu, WAN Gang, XIA Zhaopeng, LIU Yong. Preparation and properties of hexamethylenetetramine cross-linked phenolic fibers [J]. Journal of Textile Research, 2022, 43(05): 57-62.
[6] SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73.
[7] FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43.
[8] CHEN Yong, WU Jing, WANG Chaosheng, PAN Xiaohu, LI Naixiang, DAI Junming, WANG Huaping. Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber [J]. Journal of Textile Research, 2022, 43(02): 37-43.
[9] GUO Zijiao, LI Yue, ZHANG Rui, LU Zan. Preparation and properties of polyaniline/Ti3C2Tx/carbon nanotube composite fiber-based electrodes [J]. Journal of Textile Research, 2022, 43(02): 74-80.
[10] MIN Xiaobao, PAN Zhijuan. Quality and performance of biomass fiber/pineapple leaf fiber multi-component blended yarn [J]. Journal of Textile Research, 2022, 43(01): 74-79.
[11] WANG Songli, WANG Meilin, ZHOU Xiang, LIU Zunfeng. Research progress of artificial spider silk and imitation spider silk fiber [J]. Journal of Textile Research, 2021, 42(12): 174-179.
[12] SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88.
[13] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
[14] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[15] TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers [J]. Journal of Textile Research, 2021, 42(05): 168-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!