Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 211-217.doi: 10.13475/j.fzxb.20210602507
• Comprehensive Review • Previous Articles Next Articles
YUAN Jie1, LOU Lin1(), WANG Qicai2
CLC Number:
[1] |
ZHANG J, HUANG Y, YE F, et al. Evaluation of post-stroke impairment in fine tactile sensation by electroencephalography (EEG)-based machine learning[J]. Applied Sciences, 2022. DOI: 10.3390/app12094796.
doi: 10.3390/app12094796 |
[2] |
BAGHDADI G, AMIRI M, FALOTICO E, et al. Recurrence quantification analysis of EEG signals for tactile roughness discrimination[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(4): 1115-1136.
doi: 10.1007/s13042-020-01224-1 |
[3] |
TANG W, ZHANG M, CHEN G, et al. Investigation of tactile perception evoked by ridged texture using ERP and non-linear methods[J]. Frontiers in Neuroscience, 2021. DOI: 10.3389/fnins.2021.676837.
doi: 10.3389/fnins.2021.676837 |
[4] |
SONG Y, SU Q, YANG Q, et al. Feedforward and feedback pathways of nociceptive and tactile processing in human somatosensory system: a study of dynamic causal modeling of fMRI data[J]. NeuroImage, 2021. DOI: 10.1016/j.neuroimage.2021117957.
doi: 10.1016/j.neuroimage.2021117957 |
[5] |
YUAN J, XU C, WANG Q, et al. Brain signal changes of sensory cortex according to surface roughness of boneless corsets[J]. Textile Research Journal, 2020, 90(1): 76-90.
doi: 10.1177/0040517519858758 |
[6] | 庄宁. 基于脑电的情绪加工与识别技术研究[D]. 郑州: 战略支援部队信息工程大学, 2020: 1-5. |
ZHUANG Ning. Research on emotion processing and recog nition based on EEG[D]. Zhengzhou: Strategic Support Force Information Engineering University, 2020: 1-5. | |
[7] |
LUO X, YUN S, XUE C, et al. Study on comfort evaluation methods of different women's high-heeled shoes based on electroencephalograph (EEG) technology[J]. Leather Footwear Journal, 2020, 20: 5-14.
doi: 10.24264/lfj.20.1.1 |
[8] |
MONDJAR T, HERVS R, JOHNSON E, et al. Analyzing EEG waves to support the design of serious games for cognitive training[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(6): 2161-2174.
doi: 10.1007/s12652-018-0841-0 |
[9] |
LEE H, KIM K, LEE Y. Effect of compression pants on EEG spectrum[J]. International Journal of Clothing Science and Technology, 2020, 32(2):197-207.
doi: 10.1108/IJCST-03-2019-0031 |
[10] | 夏羽. 基于神经电生理学的丝织物触感评价和认知研究[D]. 苏州: 苏州大学, 2017: 28-32. |
XIA Yu. Research on tactile evaluation of silk fabrics based on neural electrophysiology[D]. Suzhou: Soochow University, 2017: 28-32. | |
[11] |
GRECO A, GUIDI A, BIANCHI M, et al. Brain dynamics induced by pleasant/unpleasant tactile stimuli conveyed by different fabrics[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(6): 2417-2427.
doi: 10.1109/JBHI.2019.2893324 |
[12] |
JIAO J, HU X, HUANG Y, et al. Neuro-perceptive discrimination on fabric tactile stimulation by electroencephalographic (EEG) spectra[J]. PLoS One, 2020. DOI: 10.1371/journal.pone.0241378.
doi: 10.1371/journal.pone.0241378 |
[13] |
LIU Y J, CHEN D S. An analysis on EEG power spectrum under pressure of girdle[J]. International Journal of Clothing Science and Technology, 2015, 27(4): 495-505.
doi: 10.1108/IJCST-05-2014-0065 |
[14] | 庄苏楠, 张英姿, 张技术. 基于EEG的负离子功能服装评价研究[J]. 纺织科技进展, 2020(12): 45-47. |
ZHANG Sunan, ZHANG Yingzi, ZHANG Jishu. Evaluation of anion functional clothing based on EEG[J]. Progress in Textile Science and Technology, 2020(12): 45-47. | |
[15] |
PARK S, LEE Y. Verification of effectiveness of wearing compression pants in wearable robot based on bio-signals[J]. Journal of the Korean Society of Clothing and Textiles, 2021, 45(2): 305-316.
doi: 10.5850/JKSCT.2021.45.2.305 |
[16] |
HAN J, CHUN C. Differences between EEG during thermal discomfort and thermal displeasure[J]. Building and Environment, 2021. DOI: 10.1016/j.buildenv.108220.
doi: 10.1016/j.buildenv.108220 |
[17] |
SHIN Y, LEE M, CHO H. Analysis of EEG, cardiac activity status, and thermal comfort according to the type of cooling seat during rest in indoor temperature[J]. Applied Sciences, 2020. DOI: 10.3390/app11010097.
doi: 10.3390/app11010097 |
[18] |
KIM Y, HAN J, CHUN C. Evaluation of comfort in subway stations via electroencephalography measurements in field experiments[J]. Building and Environment, 2020. DOI: 10.1016/j.buildenv.2020.107130.
doi: 10.1016/j.buildenv.2020.107130 |
[19] | 曹辰杰, 李文雅, 李德生, 等. 老年人长程脑电图表现影响因素分析[J]. 中华老年心脑血管病杂志, 2020, 22(10): 1074-1076. |
CAO Chenjie, LI Wenya, LI Desheng, et al. Analysis of influencing factors of EEG in elderly patients[J]. Chinese Journal of Geriatric Cardio-Cerebrovascular Disease, 2020, 22(10): 1074-1076. | |
[20] | 童新兰. 探讨影响脑电图的诊断因素[J]. 世界最新医学信息文摘, 2019, 19(18): 220-226. |
TONG Xinlan. Study on diagnostic factors influencing electroencephalography[J]. World Latest Medical Information Digest, 2019, 19(18): 220-226. | |
[21] |
CARRION O D, FONSECA D R, PINEDA I. Analysis of factors that influence the performance of biometric systems based on EEG signals[J]. Expert Systems With Applications, 2021. DOI: 10.1016/j.eswa.2020.113967.
doi: 10.1016/j.eswa.2020.113967 |
[22] | 鲍甜恬. 单次运动想象脑电信号的特征提取与意图识别[D]. 秦皇岛: 燕山大学, 2020: 5-14. |
BAO Tiantian. Feature extraction and intention recognition of single motion imagery EEG signals[D]. Qinhuangdao: Yanshan University, 2020: 5-14. | |
[23] |
VAUGHAN J R H G, COSTA L D, GILDEN L. The functional relation of visual evoked response and reaction time to stimulus intensity[J]. Vision Research, 1966, 6(11/12): 645-656.
doi: 10.1016/0042-6989(66)90076-9 |
[24] |
SUTTON S, RUCHKIN D S. The late positive complex:advances and new problems[J]. Annals of the New York Academy of Sciences, 1984, 425: 1-23.
doi: 10.1111/j.1749-6632.1984.tb23520.x |
[25] | 关徐涛, 胡翔燕, 牟宗玲, 等. 在正常中老年人群开展肝主疏泄与认知衰老试验的可行性分析[J]. 中华中医药学刊, 2019, 37(10): 2408-2410. |
GUAN Xutao, HU Xiangyan, MOU Zongling, et al. Feasibility analysis of the experiment of liver drainage and cognitive aging in normal middle-aged and elderly people[J]. Chinese Journal of Traditional Chinese Medicine, 2019, 37(10): 2408-2410. | |
[26] | 郭丞, 张日辉. 电生理学在康复中的应用[J]. 包头医学院学报, 2009, 25(2): 229-231. |
GUO Cheng, ZHANG Rihui. The application of electrophysiology in rehabilitation[J]. Journal of Baotou Medical College, 2009, 25(2): 229-231. | |
[27] | 疏德明. 事件相关电位技术实验操作及注意事项[J]. 实验技术与管理, 2017, 34(1): 198-202. |
SHU Deming. Experimental operation and precautions of event-related potential technique[J]. Experimental Technique and Management, 2017, 34(1): 198-202. | |
[28] |
KAPPENMAN E S, FARRENS J L, ZHANG W, et al. ERP core: an open resource for human event-related potential research[J]. NeuroImage, 2021. DOI: 10.1016/j.neuroimage.2020.117465.
doi: 10.1016/j.neuroimage.2020.117465 |
[29] | 张晓夏. 基于神经生理学的丝织物手感认知机理研究[D]. 苏州: 苏州大学, 2015: 112. |
ZHANG Xiaoxia. Study on the cognitive mechanism of silk handfeel based on neurophysiology[D]. Suzhou: Soochow University, 2015: 112. | |
[30] | 吴豹, 杨苏勇, 胡浩宇, 等. 事件相关电位在疼痛领域中的研究进展和应用[J]. 中国疼痛医学杂志, 2019, 25(5): 378-382. |
WU Bao, YANG Suyong, HU Haoyu, et al. Research progress and application of event-related potentials in the field of pain[J]. Journal of Pain Medicine, 2019, 25(5): 378-382. | |
[31] | 韩亮. 事件相关电位技术在针灸认知领域的研究进展[J]. 亚太传统医药, 2016, 12(5): 56-59. |
HAN Liang. The research progress of event-related potential technique in acupuncture cognition[J]. Journal of Acupuncture and Moxibustion, 2016, 12(5): 56-59. | |
[32] |
LIU Y, WANG W, XU W, et al. Quantifying the generation process of multi-level tactile sensations via ERP component investigation[J]. International Journal of Neural Systems, 2021. DOI: 10.1142/S01290657.2150049.
doi: 10.1142/S01290657.2150049 |
[33] |
HORIBA Y, KAMIJO M, HOSOYA S, et al. Evaluation of tactile sensation for wearing by using event related potential[J]. Fiber, 2000, 56(1): 47-54.
doi: 10.2115/fiber.56.47 |
[34] | 苑洁, 于伟东, 陈克敏. 基于功能磁共振的织物触压舒适度脑感知研究进展[J]. 纺织学报, 2017, 38(10): 146-152. |
YUAN Jie, YU Weidong, CHEN Kemin. Advances in brain perception of fabric contact comfort based on functional magnetic resonance[J]. Journal of Textile Research, 2017, 38(10): 146-152. | |
[35] | 邱佩钰, 王东, 钱峰, 等. 视觉疲劳对驾驶人注意能力影响的事件相关电位研究[J]. 交通医学, 2011, 25(6): 570-573. |
QIU Peiyu, WANG Dong, QIAN Feng, et al. The effects of visual fatigue on drivers' attention ability: an event-related potential study[J]. Journal of Transportation Medicine, 2011, 25(6): 570-573. | |
[36] |
TANG W, LU X, CHEN S, et al. Tactile perception of skin: research on late positive component of event-related potentials evoked by friction[J]. Journal of The Textile Institute, 2020, 111(5): 623-629.
doi: 10.1080/00405000.2019.1661067 |
[37] |
HEO D, KIM M, KIM J, et al. Effect of static posture on online performance of P300-based BCIs for TV control[J]. Sensors, 2021. DOI: 10.3390/S21072278.
doi: 10.3390/S21072278 |
[38] |
HOEFER D, HANDEL M, MULLER K M, et al. Electroencephalographic study showing that tactile stimulation by fabrics of different qualities elicit graded event-related potentials[J]. Skin Research and Technology, 2016, 22(4): 470-478.
doi: 10.1111/srt.12288 |
[39] | CHEN S, GE S. Experimental research on the tactile perception from fingertip skin friction[J]. Wear, 2017, 376: 305-314. |
[40] |
YE P, WU X, GAO D, et al. DP3 signal as a neuro-indictor for attentional processing of stereoscopic contents in varied depths within the comfort zone[J]. Displays, 2020. DOI: 10.1016/j.displa.2020.101953.
doi: 10.1016/j.displa.2020.101953 |
[41] | 贺玲姣. 不同声刺激下的情绪反应与识别[D]. 杭州: 浙江大学, 2013: 5-6. |
HE Lingjiao. Emotional response and recognition under different acoustic stimuli[D]. Hangzhou: Zhejiang University, 2013: 5-6. | |
[42] | 宋其毅. 基于特征分解的磁共振信号处理方法研究[D]. 成都: 电子科技大学, 2006: 5-7. |
SONG Qiyi. Research on magnetic resonance signal processing method based on eigen decomposition[D]. Chengdu: University of Electronic Science and Technology of China, 2006: 5-7. | |
[43] | 张慧芳. 酒精依赖者MR静息态全脑低频振幅及功能连接的研究[D]. 南昌: 南昌大学, 2016: 3-5. |
ZHANG Huifang. Study on the effect of MR resting state on low-frequency amplitude and functional connection of alcohol-dependent patients[D]. Nanchang: Nanchang University, 2016: 3-5. | |
[44] |
YUAN J, YU W D, CHEN K M, et al. A potential new fabric evaluation approach by capturing brain perception under fabric contact pressure[J]. Textile Research Journal, 2019, 89(16): 3312-3325.
doi: 10.1177/0040517518811939 |
[45] |
RENVALL V, KAURAMÄKI J, MALINEN S, et al. Imaging real-time tactile interaction with two-person dual-coil fMRI[J]. Frontiers in Psychiatry, 2020. DOI: 10.1101/861252.
doi: 10.1101/861252 |
[46] |
WANG Q, YU W, HE N, et al. Investigation of the cortical activation by touching fabric actively using fingers[J]. Skin Research and Technology, 2015, 21(4): 444-448.
doi: 10.1111/srt.12212 |
[47] |
VARLAMOV A, PORTNOVA G, MCGLONE F. The c-tactile system and the neurobiological mechanisms of "affective" tactile perception: the history of discoveries and the current state of research[J]. Neuroscience and Behavioral Physiology, 2020, 50(4): 418-427.
doi: 10.1007/s11055-020-00916-z |
[48] |
SONG X, BHINGE S, QUITON R L, et al. An ICA based approach for steady-state and transient analysis of task fMRI data: application to study of thermal pain response[J]. Journal of Neuroscience Methods, 2019. DOI: 10.1016/j.ineumeth.2019.108356.
doi: 10.1016/j.ineumeth.2019.108356 |
[49] |
DUAN G, HE Q, PANG Y, et al. Altered amygdala resting-state functional connectivity following acupuncture stimulation at BaiHui (GV20) in first-episode drug-naïve major depressive disorder[J]. Brain Imaging and Behavior, 2020, 14(6): 2269-2280.
doi: 10.1007/s11682-019-00178-5 |
[50] |
DU Y, LI H, XIAO H, et al. Illness severity moderated association between trait anxiety and amygdala-based functional connectivity in generalized anxiety disorder[J]. Frontiers in Behavioral Neuroscience, 2021. DOI: 10.3389/fnbeh.2021.637426.
doi: 10.3389/fnbeh.2021.637426 |
[51] |
ALLEN H N, BOBNAR H J, KOLBER B J. Left and right hemispheric lateralization of the amygdala in pain[J]. Progress in Neurobiology, 2021. DOI: 10.1016/j.pneurobio.2020.101891.
doi: 10.1016/j.pneurobio.2020.101891 |
[52] |
LUYCK K, GOODE T D, MASSON H L, et al. Distinct activity patterns of the human bed nucleus of the stria terminalis and amygdala during fear learning[J]. Neuropsychology Review, 2019, 29(2): 181-185.
doi: 10.1007/s11065-018-9383-7 |
[53] |
MARTYNOVA O, TETEREVA A, BALAEV V, et al. Longitudinal changes of resting-state functional connectivity of amygdala following fear learning and extinction[J]. International Journal of Psychophysiology, 2020, 149:15-24.
doi: 10.1016/j.ijpsycho.2020.01.002 |
[54] |
SMIRNI D, SMIRNI P, CAROTENUTO M, et al. Noli me tangere: social touch, tactile defensiveness, and communication in neurodevelopmental disorders[J]. Brain Sciences, 2019. DOI: 10.3390/brainsci9120368.
doi: 10.3390/brainsci9120368 |
[55] | HUETTEL S A, SONG A W, MCCARTHY G. Functional magnetic resonance imaging[M]. Sunderland: Sinauer Associates, 2004: 20-24. |
[56] | 吴睿, 刘存芳, 葛红光, 等. 医学影像中的分子成像技术[J]. 影像科学与光化学, 2018, 36(4): 359-366. |
WU Rui, LIU Cunfang, GE Hongguang, et al. Molecular imaging in medical imaging[J]. Journal of Bio-Medical Imaging, 2018, 36(4): 359-366. | |
[57] | 王晓平, 王俊峰. 基于神经心理学的功能神经影像学研究进展[J]. 上海交通大学学报(医学版), 2009, 29(6): 747-750. |
WANG Xiaoping, WANG Junfeng. Research progress of functional neuroimaging based on neuropsychology[J]. Journal of Shanghai Jiao Tong University (Medical Edition), 2009, 29(6): 747-750. | |
[58] | 贾森. 快速高分辨率磁共振成像[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2019: 52-59. |
JIA Sen. Rapid high resolution magnetic resonance imaging[D]. Shenzhen: University of Chinese Academy of Sciences (CAS Shenzhen Institute of Advanced Technology), 2019: 52-59. | |
[59] |
HAMMEKE T A, YETKIN F Z, MUELLER W M, et al. Functional magnetic resonance imaging of somatosensory stimulation[J]. Neurosurgery, 1994, 35(4): 677-681.
doi: 10.1227/00006123-199410000-00014 |
[60] |
SCHIRMER A, ADOLPHS R. Emotion perception from face, voice, and touch: comparisons and convergence[J]. Trends in Cognitive Sciences, 2017, 21(3): 216-228.
doi: 10.1016/j.tics.2017.01.001 |
[61] | 林芳. 脑电近似熵分析在帕金森病认知功能障碍中的评估作用研究[D]. 福州: 福建医科大学, 2011: 14-17. |
LIN Fang. The effect of EEG approximate entropy analysis on cognitive impairment in parkinson's disease[D]. Fuzhou: Fujian Medical University, 2011: 14-17. | |
[62] | 张晓斌. 磁共振成像设备的常见故障及维护策略[J]. 医疗装备, 2019, 32(18): 148-149. |
ZHANG Xiaobin. Common failure and maintenance strategy of magnetic resonance imaging equipment[J]. Medical Equipment, 2019, 32(18): 148-149. | |
[63] |
LASCANO A M, GROUILLER F, GENETTI M, et al. Surgically relevant localization of the central sulcus with high-density somatosensory-evoked potentials compared with functional magnetic resonance imaging[J]. Neurosurgery, 2014, 74(5): 517-526.
doi: 10.1227/NEU.0000000000000298 |
[1] | . Brain cognitive characterization of contact pressure comfort of fabrics based on functional magnetic resonance imaging [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 146-152. |
[2] | LU Jia, CHEN Dong-sheng. Application of emotional event-related potentials in fashion design [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(2): 151-156. |
|