Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 211-217.doi: 10.13475/j.fzxb.20210602507

• Comprehensive Review • Previous Articles     Next Articles

Research progress of brain perception technology for fabric tactile comfort

YUAN Jie1, LOU Lin1(), WANG Qicai2   

  1. 1. Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-06-08 Revised:2022-06-14 Online:2022-09-15 Published:2022-09-26
  • Contact: LOU Lin E-mail:loulin@zstu.edu.cn

Abstract:

In order to analyse the mechanism in brain perception of traditional textile tactile comfort, an appropriate brain perception representation technology of tactile comfort was selected for the in-situ characterization of fabric comfort perception. This paper focused on the research progress in three advanced techniques of electroencephalography, event-related potential and functional magnetic resonance imaging in the area of tactile comfort of fabrics, and analyzed and compared their instrument resolution, somatosensory recognition and detection safety. It was concluded that event-related potential was more advantageous in terms of temporal resolution, detection safety and universality, and was suitable for capturing the brain region of dynamic fabric comfort perception. In terms of spatial resolution and somatosensory recognition, functional magnetic resonance imaging was superior, which was suitable for precise positioning of brain perception of fabric comfort.

Key words: fabric comfort, brain perception, electroencephalogram, event-related potential, functional magnetic resonance imaging

CLC Number: 

  • TS941.19

Fig.1

Schematic diagram of fabric tactile event-related potential technology"

Fig.2

Brain images of functional magnetic resonance imaging. (a) Activation brain images of adjacent slices from bottom to top; (b) Three views of activated brain areas; (c) Three-dimensional brain images of brain"

[1] ZHANG J, HUANG Y, YE F, et al. Evaluation of post-stroke impairment in fine tactile sensation by electroencephalography (EEG)-based machine learning[J]. Applied Sciences, 2022. DOI: 10.3390/app12094796.
doi: 10.3390/app12094796
[2] BAGHDADI G, AMIRI M, FALOTICO E, et al. Recurrence quantification analysis of EEG signals for tactile roughness discrimination[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(4): 1115-1136.
doi: 10.1007/s13042-020-01224-1
[3] TANG W, ZHANG M, CHEN G, et al. Investigation of tactile perception evoked by ridged texture using ERP and non-linear methods[J]. Frontiers in Neuroscience, 2021. DOI: 10.3389/fnins.2021.676837.
doi: 10.3389/fnins.2021.676837
[4] SONG Y, SU Q, YANG Q, et al. Feedforward and feedback pathways of nociceptive and tactile processing in human somatosensory system: a study of dynamic causal modeling of fMRI data[J]. NeuroImage, 2021. DOI: 10.1016/j.neuroimage.2021117957.
doi: 10.1016/j.neuroimage.2021117957
[5] YUAN J, XU C, WANG Q, et al. Brain signal changes of sensory cortex according to surface roughness of boneless corsets[J]. Textile Research Journal, 2020, 90(1): 76-90.
doi: 10.1177/0040517519858758
[6] 庄宁. 基于脑电的情绪加工与识别技术研究[D]. 郑州: 战略支援部队信息工程大学, 2020: 1-5.
ZHUANG Ning. Research on emotion processing and recog nition based on EEG[D]. Zhengzhou: Strategic Support Force Information Engineering University, 2020: 1-5.
[7] LUO X, YUN S, XUE C, et al. Study on comfort evaluation methods of different women's high-heeled shoes based on electroencephalograph (EEG) technology[J]. Leather Footwear Journal, 2020, 20: 5-14.
doi: 10.24264/lfj.20.1.1
[8] MONDJAR T, HERVS R, JOHNSON E, et al. Analyzing EEG waves to support the design of serious games for cognitive training[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(6): 2161-2174.
doi: 10.1007/s12652-018-0841-0
[9] LEE H, KIM K, LEE Y. Effect of compression pants on EEG spectrum[J]. International Journal of Clothing Science and Technology, 2020, 32(2):197-207.
doi: 10.1108/IJCST-03-2019-0031
[10] 夏羽. 基于神经电生理学的丝织物触感评价和认知研究[D]. 苏州: 苏州大学, 2017: 28-32.
XIA Yu. Research on tactile evaluation of silk fabrics based on neural electrophysiology[D]. Suzhou: Soochow University, 2017: 28-32.
[11] GRECO A, GUIDI A, BIANCHI M, et al. Brain dynamics induced by pleasant/unpleasant tactile stimuli conveyed by different fabrics[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(6): 2417-2427.
doi: 10.1109/JBHI.2019.2893324
[12] JIAO J, HU X, HUANG Y, et al. Neuro-perceptive discrimination on fabric tactile stimulation by electroencephalographic (EEG) spectra[J]. PLoS One, 2020. DOI: 10.1371/journal.pone.0241378.
doi: 10.1371/journal.pone.0241378
[13] LIU Y J, CHEN D S. An analysis on EEG power spectrum under pressure of girdle[J]. International Journal of Clothing Science and Technology, 2015, 27(4): 495-505.
doi: 10.1108/IJCST-05-2014-0065
[14] 庄苏楠, 张英姿, 张技术. 基于EEG的负离子功能服装评价研究[J]. 纺织科技进展, 2020(12): 45-47.
ZHANG Sunan, ZHANG Yingzi, ZHANG Jishu. Evaluation of anion functional clothing based on EEG[J]. Progress in Textile Science and Technology, 2020(12): 45-47.
[15] PARK S, LEE Y. Verification of effectiveness of wearing compression pants in wearable robot based on bio-signals[J]. Journal of the Korean Society of Clothing and Textiles, 2021, 45(2): 305-316.
doi: 10.5850/JKSCT.2021.45.2.305
[16] HAN J, CHUN C. Differences between EEG during thermal discomfort and thermal displeasure[J]. Building and Environment, 2021. DOI: 10.1016/j.buildenv.108220.
doi: 10.1016/j.buildenv.108220
[17] SHIN Y, LEE M, CHO H. Analysis of EEG, cardiac activity status, and thermal comfort according to the type of cooling seat during rest in indoor temperature[J]. Applied Sciences, 2020. DOI: 10.3390/app11010097.
doi: 10.3390/app11010097
[18] KIM Y, HAN J, CHUN C. Evaluation of comfort in subway stations via electroencephalography measurements in field experiments[J]. Building and Environment, 2020. DOI: 10.1016/j.buildenv.2020.107130.
doi: 10.1016/j.buildenv.2020.107130
[19] 曹辰杰, 李文雅, 李德生, 等. 老年人长程脑电图表现影响因素分析[J]. 中华老年心脑血管病杂志, 2020, 22(10): 1074-1076.
CAO Chenjie, LI Wenya, LI Desheng, et al. Analysis of influencing factors of EEG in elderly patients[J]. Chinese Journal of Geriatric Cardio-Cerebrovascular Disease, 2020, 22(10): 1074-1076.
[20] 童新兰. 探讨影响脑电图的诊断因素[J]. 世界最新医学信息文摘, 2019, 19(18): 220-226.
TONG Xinlan. Study on diagnostic factors influencing electroencephalography[J]. World Latest Medical Information Digest, 2019, 19(18): 220-226.
[21] CARRION O D, FONSECA D R, PINEDA I. Analysis of factors that influence the performance of biometric systems based on EEG signals[J]. Expert Systems With Applications, 2021. DOI: 10.1016/j.eswa.2020.113967.
doi: 10.1016/j.eswa.2020.113967
[22] 鲍甜恬. 单次运动想象脑电信号的特征提取与意图识别[D]. 秦皇岛: 燕山大学, 2020: 5-14.
BAO Tiantian. Feature extraction and intention recognition of single motion imagery EEG signals[D]. Qinhuangdao: Yanshan University, 2020: 5-14.
[23] VAUGHAN J R H G, COSTA L D, GILDEN L. The functional relation of visual evoked response and reaction time to stimulus intensity[J]. Vision Research, 1966, 6(11/12): 645-656.
doi: 10.1016/0042-6989(66)90076-9
[24] SUTTON S, RUCHKIN D S. The late positive complex:advances and new problems[J]. Annals of the New York Academy of Sciences, 1984, 425: 1-23.
doi: 10.1111/j.1749-6632.1984.tb23520.x
[25] 关徐涛, 胡翔燕, 牟宗玲, 等. 在正常中老年人群开展肝主疏泄与认知衰老试验的可行性分析[J]. 中华中医药学刊, 2019, 37(10): 2408-2410.
GUAN Xutao, HU Xiangyan, MOU Zongling, et al. Feasibility analysis of the experiment of liver drainage and cognitive aging in normal middle-aged and elderly people[J]. Chinese Journal of Traditional Chinese Medicine, 2019, 37(10): 2408-2410.
[26] 郭丞, 张日辉. 电生理学在康复中的应用[J]. 包头医学院学报, 2009, 25(2): 229-231.
GUO Cheng, ZHANG Rihui. The application of electrophysiology in rehabilitation[J]. Journal of Baotou Medical College, 2009, 25(2): 229-231.
[27] 疏德明. 事件相关电位技术实验操作及注意事项[J]. 实验技术与管理, 2017, 34(1): 198-202.
SHU Deming. Experimental operation and precautions of event-related potential technique[J]. Experimental Technique and Management, 2017, 34(1): 198-202.
[28] KAPPENMAN E S, FARRENS J L, ZHANG W, et al. ERP core: an open resource for human event-related potential research[J]. NeuroImage, 2021. DOI: 10.1016/j.neuroimage.2020.117465.
doi: 10.1016/j.neuroimage.2020.117465
[29] 张晓夏. 基于神经生理学的丝织物手感认知机理研究[D]. 苏州: 苏州大学, 2015: 112.
ZHANG Xiaoxia. Study on the cognitive mechanism of silk handfeel based on neurophysiology[D]. Suzhou: Soochow University, 2015: 112.
[30] 吴豹, 杨苏勇, 胡浩宇, 等. 事件相关电位在疼痛领域中的研究进展和应用[J]. 中国疼痛医学杂志, 2019, 25(5): 378-382.
WU Bao, YANG Suyong, HU Haoyu, et al. Research progress and application of event-related potentials in the field of pain[J]. Journal of Pain Medicine, 2019, 25(5): 378-382.
[31] 韩亮. 事件相关电位技术在针灸认知领域的研究进展[J]. 亚太传统医药, 2016, 12(5): 56-59.
HAN Liang. The research progress of event-related potential technique in acupuncture cognition[J]. Journal of Acupuncture and Moxibustion, 2016, 12(5): 56-59.
[32] LIU Y, WANG W, XU W, et al. Quantifying the generation process of multi-level tactile sensations via ERP component investigation[J]. International Journal of Neural Systems, 2021. DOI: 10.1142/S01290657.2150049.
doi: 10.1142/S01290657.2150049
[33] HORIBA Y, KAMIJO M, HOSOYA S, et al. Evaluation of tactile sensation for wearing by using event related potential[J]. Fiber, 2000, 56(1): 47-54.
doi: 10.2115/fiber.56.47
[34] 苑洁, 于伟东, 陈克敏. 基于功能磁共振的织物触压舒适度脑感知研究进展[J]. 纺织学报, 2017, 38(10): 146-152.
YUAN Jie, YU Weidong, CHEN Kemin. Advances in brain perception of fabric contact comfort based on functional magnetic resonance[J]. Journal of Textile Research, 2017, 38(10): 146-152.
[35] 邱佩钰, 王东, 钱峰, 等. 视觉疲劳对驾驶人注意能力影响的事件相关电位研究[J]. 交通医学, 2011, 25(6): 570-573.
QIU Peiyu, WANG Dong, QIAN Feng, et al. The effects of visual fatigue on drivers' attention ability: an event-related potential study[J]. Journal of Transportation Medicine, 2011, 25(6): 570-573.
[36] TANG W, LU X, CHEN S, et al. Tactile perception of skin: research on late positive component of event-related potentials evoked by friction[J]. Journal of The Textile Institute, 2020, 111(5): 623-629.
doi: 10.1080/00405000.2019.1661067
[37] HEO D, KIM M, KIM J, et al. Effect of static posture on online performance of P300-based BCIs for TV control[J]. Sensors, 2021. DOI: 10.3390/S21072278.
doi: 10.3390/S21072278
[38] HOEFER D, HANDEL M, MULLER K M, et al. Electroencephalographic study showing that tactile stimulation by fabrics of different qualities elicit graded event-related potentials[J]. Skin Research and Technology, 2016, 22(4): 470-478.
doi: 10.1111/srt.12288
[39] CHEN S, GE S. Experimental research on the tactile perception from fingertip skin friction[J]. Wear, 2017, 376: 305-314.
[40] YE P, WU X, GAO D, et al. DP3 signal as a neuro-indictor for attentional processing of stereoscopic contents in varied depths within the comfort zone[J]. Displays, 2020. DOI: 10.1016/j.displa.2020.101953.
doi: 10.1016/j.displa.2020.101953
[41] 贺玲姣. 不同声刺激下的情绪反应与识别[D]. 杭州: 浙江大学, 2013: 5-6.
HE Lingjiao. Emotional response and recognition under different acoustic stimuli[D]. Hangzhou: Zhejiang University, 2013: 5-6.
[42] 宋其毅. 基于特征分解的磁共振信号处理方法研究[D]. 成都: 电子科技大学, 2006: 5-7.
SONG Qiyi. Research on magnetic resonance signal processing method based on eigen decomposition[D]. Chengdu: University of Electronic Science and Technology of China, 2006: 5-7.
[43] 张慧芳. 酒精依赖者MR静息态全脑低频振幅及功能连接的研究[D]. 南昌: 南昌大学, 2016: 3-5.
ZHANG Huifang. Study on the effect of MR resting state on low-frequency amplitude and functional connection of alcohol-dependent patients[D]. Nanchang: Nanchang University, 2016: 3-5.
[44] YUAN J, YU W D, CHEN K M, et al. A potential new fabric evaluation approach by capturing brain perception under fabric contact pressure[J]. Textile Research Journal, 2019, 89(16): 3312-3325.
doi: 10.1177/0040517518811939
[45] RENVALL V, KAURAMÄKI J, MALINEN S, et al. Imaging real-time tactile interaction with two-person dual-coil fMRI[J]. Frontiers in Psychiatry, 2020. DOI: 10.1101/861252.
doi: 10.1101/861252
[46] WANG Q, YU W, HE N, et al. Investigation of the cortical activation by touching fabric actively using fingers[J]. Skin Research and Technology, 2015, 21(4): 444-448.
doi: 10.1111/srt.12212
[47] VARLAMOV A, PORTNOVA G, MCGLONE F. The c-tactile system and the neurobiological mechanisms of "affective" tactile perception: the history of discoveries and the current state of research[J]. Neuroscience and Behavioral Physiology, 2020, 50(4): 418-427.
doi: 10.1007/s11055-020-00916-z
[48] SONG X, BHINGE S, QUITON R L, et al. An ICA based approach for steady-state and transient analysis of task fMRI data: application to study of thermal pain response[J]. Journal of Neuroscience Methods, 2019. DOI: 10.1016/j.ineumeth.2019.108356.
doi: 10.1016/j.ineumeth.2019.108356
[49] DUAN G, HE Q, PANG Y, et al. Altered amygdala resting-state functional connectivity following acupuncture stimulation at BaiHui (GV20) in first-episode drug-naïve major depressive disorder[J]. Brain Imaging and Behavior, 2020, 14(6): 2269-2280.
doi: 10.1007/s11682-019-00178-5
[50] DU Y, LI H, XIAO H, et al. Illness severity moderated association between trait anxiety and amygdala-based functional connectivity in generalized anxiety disorder[J]. Frontiers in Behavioral Neuroscience, 2021. DOI: 10.3389/fnbeh.2021.637426.
doi: 10.3389/fnbeh.2021.637426
[51] ALLEN H N, BOBNAR H J, KOLBER B J. Left and right hemispheric lateralization of the amygdala in pain[J]. Progress in Neurobiology, 2021. DOI: 10.1016/j.pneurobio.2020.101891.
doi: 10.1016/j.pneurobio.2020.101891
[52] LUYCK K, GOODE T D, MASSON H L, et al. Distinct activity patterns of the human bed nucleus of the stria terminalis and amygdala during fear learning[J]. Neuropsychology Review, 2019, 29(2): 181-185.
doi: 10.1007/s11065-018-9383-7
[53] MARTYNOVA O, TETEREVA A, BALAEV V, et al. Longitudinal changes of resting-state functional connectivity of amygdala following fear learning and extinction[J]. International Journal of Psychophysiology, 2020, 149:15-24.
doi: 10.1016/j.ijpsycho.2020.01.002
[54] SMIRNI D, SMIRNI P, CAROTENUTO M, et al. Noli me tangere: social touch, tactile defensiveness, and communication in neurodevelopmental disorders[J]. Brain Sciences, 2019. DOI: 10.3390/brainsci9120368.
doi: 10.3390/brainsci9120368
[55] HUETTEL S A, SONG A W, MCCARTHY G. Functional magnetic resonance imaging[M]. Sunderland: Sinauer Associates, 2004: 20-24.
[56] 吴睿, 刘存芳, 葛红光, 等. 医学影像中的分子成像技术[J]. 影像科学与光化学, 2018, 36(4): 359-366.
WU Rui, LIU Cunfang, GE Hongguang, et al. Molecular imaging in medical imaging[J]. Journal of Bio-Medical Imaging, 2018, 36(4): 359-366.
[57] 王晓平, 王俊峰. 基于神经心理学的功能神经影像学研究进展[J]. 上海交通大学学报(医学版), 2009, 29(6): 747-750.
WANG Xiaoping, WANG Junfeng. Research progress of functional neuroimaging based on neuropsychology[J]. Journal of Shanghai Jiao Tong University (Medical Edition), 2009, 29(6): 747-750.
[58] 贾森. 快速高分辨率磁共振成像[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2019: 52-59.
JIA Sen. Rapid high resolution magnetic resonance imaging[D]. Shenzhen: University of Chinese Academy of Sciences (CAS Shenzhen Institute of Advanced Technology), 2019: 52-59.
[59] HAMMEKE T A, YETKIN F Z, MUELLER W M, et al. Functional magnetic resonance imaging of somatosensory stimulation[J]. Neurosurgery, 1994, 35(4): 677-681.
doi: 10.1227/00006123-199410000-00014
[60] SCHIRMER A, ADOLPHS R. Emotion perception from face, voice, and touch: comparisons and convergence[J]. Trends in Cognitive Sciences, 2017, 21(3): 216-228.
doi: 10.1016/j.tics.2017.01.001
[61] 林芳. 脑电近似熵分析在帕金森病认知功能障碍中的评估作用研究[D]. 福州: 福建医科大学, 2011: 14-17.
LIN Fang. The effect of EEG approximate entropy analysis on cognitive impairment in parkinson's disease[D]. Fuzhou: Fujian Medical University, 2011: 14-17.
[62] 张晓斌. 磁共振成像设备的常见故障及维护策略[J]. 医疗装备, 2019, 32(18): 148-149.
ZHANG Xiaobin. Common failure and maintenance strategy of magnetic resonance imaging equipment[J]. Medical Equipment, 2019, 32(18): 148-149.
[63] LASCANO A M, GROUILLER F, GENETTI M, et al. Surgically relevant localization of the central sulcus with high-density somatosensory-evoked potentials compared with functional magnetic resonance imaging[J]. Neurosurgery, 2014, 74(5): 517-526.
doi: 10.1227/NEU.0000000000000298
[1] . Brain cognitive characterization of contact pressure comfort of fabrics based on functional magnetic resonance imaging [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 146-152.
[2] LU Jia, CHEN Dong-sheng.  Application of emotional event-related potentials in fashion design [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(2): 151-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!