Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 208-213.doi: 10.13475/j.fzxb.20210603206

• Machinery & Accessories • Previous Articles     Next Articles

Grabbing performance of non-contact gripper based on Coanda effect for garment fabrics

LIU Hanbang1,2, LI Xinrong1,2(), FENG Wenqian1,2, WU Liubo1,2, YUAN Ruwang1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Modern Mechanical and Electrical Equipment Technology, Tianjin 300387, China
  • Received:2021-06-09 Revised:2021-11-24 Online:2022-02-15 Published:2022-03-15
  • Contact: LI Xinrong E-mail:lixinrong7507@hotmail.com

Abstract:

The automatic grabbing and transfer of garment fabrics is the key to the automated production of the garment industry in order to improve the processing efficiency in garment production. Aiming at the problems of surface scratches and insufficient grabbing force with the current garment fabric grabbing methods, the impact of the non-contact gripper based on Coanda effect on grabbing garment fabrics was studied and analyzed. The structure and working principle of the non-contact gripper based on Coanda effect were introduced, and the grabbing performance experiments of fabrics with different parameters were carried out. The grabbing performance of garment fabrics with different fabric parameters was compared and analyzed. The results show that the non-contact gripper based on the Coanda effect can achieve the non-contact gripping of a variety of garment fabrics, which solves the problem of contact scratches and insufficient grabbing force in the production process of garment fabrics. This research can effectively reduce the spread of bacteria and viruses in the grabbing and transfer of garment fabrics, and provide technical support for the realization of the automated production of garment fabrics.

Key words: non-contact gripping, garment fabric, grabbing performance, Coanda effect

CLC Number: 

  • TS112.7

Fig.1

Schematic diagram of the structure and principle of non-contact gripper based on Coanda effect. (a) Physical structure diagram; (b) Schematic diagram"

Tab.1

List of nomenclature"

参数 符号 单位
面料有效吸附面积 s mm2
气体流速 v m/s
气体的压强 p Pa(abs)
大气压强 pa Pa(abs)
超音速区域的压强 p1 Pa(abs)
亚音速区域的压强 p2 Pa(abs)
气流的半径 r mm
空气动力黏度 μ Pa·s
夹持器与工件之间的间隙 h1 mm
方位角 δ (°)
外界大气的密度 ρa kg/m3
气体的密度 ρ kg/m3
比热容比 γ _
摩擦因数 f _
提升力 F N
超音速区域的提升力 f1 N
亚音速区域的提升力 f2 N

Fig.2

Theoretical model for pressure analysis"

Fig.3

Experimental measuring device"

Tab.2

Selected parameter values for the experiment"

喷嘴入口
半径/mm
夹持器半
径/mm
阻挡板半
径/mm
喷嘴出口
半径/mm
节能装置初级
入口面积/mm2
节能装置次级进
气口面积/mm2
4 20 5 15 50.24 254.34

Tab.3

Specific parameters of garment fabrics"

试样编号 经密/
(根·(10 cm)-1)
纬密/
(根·(10 cm)-1)
质量/g 透气量/
(mm·s-1)
厚度/mm
1 62 57 0.855 5 3 045 0.36
2 78 63 2.497 9 934.3 0.62
3 57 63 2.416 5 29.88 0.46
4 75 65 1.428 4 406.3 0.24
5 120 86 1.387 7 328 0.24
6 64 63 1.788 5 344.6 0.40
7 63 66.5 1.401 7 84.7 0.26
8 76 64.5 1.631 1 246.8 0.23
9 84 49 1.273 3 1 779.7 0.36
10 70 63 2.725 0 50.68 0.48
11 58 80 2.213 5 75.29 0.38
12 87 86 1.325 5 1 237.3 0.36

Fig.4

Schematic diagram of adsorption gap"

Fig.5

Schematic diagram of adsorption gap"

Fig.6

Lifting force experimental measuring device"

Tab.4

Crawling effect at different gas flowing"

试样
编号
气体流量/(L·min-1)
25 30 35 40 45 50
1 D D D D D D
2 A A B D D D
3 A A D D D D
4 A D D D D D
5 D D D D D D
6 A D D D D D
7 A D D D D D
8 A D D D D D
9 A D D D D D
10 A A D D D D
11 A D D D D D
12 A D D D D D

Fig.7

Adsorption gap measurement results"

Fig.8

Relationship between supply gas flow rate and lifting force"

[1] KOUSTOUMPARDIS N. A 3-finger robotic gripper for grasping fabrics based on cams-followers mecha-nism[C]// SMYRNIS S, ASPRAGATHOS N A. Advances in Service and Industrial Robotics. Cham: Springer Cham, 2017: 612-620.
[2] BIGANZOLI F, FANTONI G. A self-centering electrostatic microgripper[J]. Journal of Manufacturing Systems, 2008, 27(3): 136-144.
doi: 10.1016/j.jmsy.2008.11.002
[3] SUN B. A New electrostatic gripper for flexible handling of fabrics in automated garment manufacturing[C]// ZHANG X Y. 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). Vancouver: IEEE Computer Society, 2019: 879-884.
[4] FANTONI G, SANTOCHI M, DINI G, et al. Grasping devices and methods in automated production pro-cesses[J]. CIRP Annals-Manufacturing Technology, 2014, 63(2): 679-701.
doi: 10.1016/j.cirp.2014.05.006
[5] DAVIS S, GRAY J O, CALDWELL D G. An end effector based on the Bernoulli principle for handling sliced fruit and vegetables[J]. Robotics & Computer Integrated Manufacturing, 2008, 24(2): 249-257.
[6] MORIYA Y, TANAKA D, YAMAZAKI K, et al. A method of picking up a folded fabric product by a single-armed robot[J]. Robomech Journal, 2018, 5(1): 1-12.
doi: 10.1186/s40648-017-0098-y
[7] YUBA H, ARNOLD S, YAMAZAKI K. Unfolding of a rectangular cloth from unarranged starting shapes by a Dual-Armed robot with a mechanism for managing recognition error and uncertainty[J]. Advanced Robotics, 2017, 31(10): 31: 1-13.
doi: 10.1080/01691864.2016.1266119
[8] FAILLI F, DINI G. An innovative approach to the automated stacking and grasping of leather plies[J]. CIRP Annals: Manufacturing Technology, 2004, 53(1): 31-34.
doi: 10.1016/S0007-8506(07)60638-6
[9] CUBRIC G, SALOPEK C I. Study of grippers in automatic handling of nonwoven material[J]. Journal of the Institution of Engineers (India): Series E, 2019, 100(2): 167-173.
doi: 10.1007/s40034-019-00145-1
[10] ZHANG Z W. Modeling and analysis of electrostatic force for robot handling of fabric materials[J]. IEEE/ASME Transactions on Mechatronics, 1999, 4(1): 0-49.
[11] STEPHAN J, SELIGER G. Handling with ice-the cryo-gripper, a new approach[J]. Assembly Automation, 1999, 19(4): 332-337.
doi: 10.1108/01445159910295249
[12] DINI G, FANTONI G, FAILLI F. Grasping leather plies by Bernoulli grippers[J]. CIRP Annals: Manufacturing Technology, 2009, 58(1): 21-24.
doi: 10.1016/j.cirp.2009.03.076
[13] OZCELIK B, ERZINCANLI F. A non-contact end-effector for the handling of garments[J]. Robotica, 2002, 20(4): 447-450.
doi: 10.1017/S0263574702004125
[14] LIU H B, LI X R, MA Q L, et al. Development non-contact gripper with flowrate-amplification using Coanda ejector[J]. Vacuum, 2021, 187(5): 110108.
doi: 10.1016/j.vacuum.2021.110108
[15] 刘汉邦, 李新荣, 刘立东. 服装面料自动抓取转移方法的研究进展[J]. 纺织学报, 2021, 42(1): 190-196.
LIU Hanbang, LI Xinrong, LIU Lidong. Research progress of automatic grabbing and transfer methods for garment fabrics[J]. Journal of Textiles Research, 2021, 42(1): 190-196.
[16] 邱茂伟, 王府梅. 机织物透气性能的预测研究[J]. 纺织学报, 2005, 26(4): 73-75.
QIU Maowei, WANG Fumei. Study on the prediction of woven fabrics air permeability[J]. Journal of Textiles Research, 2005, 26(4): 73-75.
[1] DING Caihong, LI Shucheng, WU Xiru. Motion analysis and parameter design of tool setting process in automatic scraping [J]. Journal of Textile Research, 2020, 41(09): 143-148.
[2] ZHENG Xiaohu, BAO Jinsong, MA Qingwen, ZHOU Heng, ZHANG Liangshan. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm [J]. Journal of Textile Research, 2020, 41(06): 36-41.
[3] . Structure parameter optimization design of foreign fiber sorting robot based on consideration of flexibility [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(2): 151-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Jun. Current status and development trend of quality inspection technique of ring spun yarns[J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 131 -136 .
[2] . Analysis of some key technology basis for intelligent textile manufacturing and its equipment[J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 166 -171 .
[3] JI Changchun, ZHANG Kaiyuan, WANG Yudong, WANG Xinhou. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(08): 175 -180 .
[4] SUN Guangwu, LI Jiecong, XIN Sanfa, WANG Xinhou. Diameter prediction of melt-blown fiber based on non-Newtonian fluid constitutive equations[J]. Journal of Textile Research, 2019, 40(11): 20 -25 .
[5] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process[J]. Journal of Textile Research, 2020, 41(02): 26 -32 .
[6] LI Huiqin, ZHANG Nan, WEN Xiaodan, GONG Jixian, ZHAO Xiaoming, WANG Zhishuai. Progress of noise reduction product based on fiber materials[J]. Journal of Textile Research, 2020, 41(03): 175 -181 .
[7] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(03): 168 -174 .
[8] SUN Huanwei, ZHANG Heng, ZHEN Qi, ZHU Feichao, QIAN Xiaoming, CUI Jingqiang, ZHANG Yifeng. Filtrations of propylene-based micro-nano elastic filters via melt blowing process[J]. Journal of Textile Research, 2020, 41(10): 20 -28 .
[9] WANG Yudong, JI Changchun, WANG Xinhou, GAO Xiaoping. Design and numerical analysis of new types of melt blowing slot-dies[J]. Journal of Textile Research, 2021, 42(07): 95 -100 .
[10] GAO Meng, WANG Zengyuan, LOU Qiwei, CHEN Gangjin. Characteristics of charge capture of melt-blown polypropylene electret nonwovens by corona charging[J]. Journal of Textile Research, 2021, 42(09): 52 -58 .