Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 104-110.doi: 10.13475/j.fzxb.20210603407

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Application of antibacterial and antibacterial adhesion finishing agents in cotton fabric modification

YANG Yao, CHENG Wei, YU Yuanyuan(), WANG Qiang, WANG Ping, ZHOU Man   

  1. Key Laboratory of Eco-Textiles (Jiangnan University ), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2021-06-10 Revised:2022-04-14 Online:2022-07-15 Published:2022-07-29
  • Contact: YU Yuanyuan E-mail:jnyyy@jiangnan.edu.cn

Abstract:

In order to prepare cotton fabrics with both antibacterial and antibacterial adhesion functions, free radical polymerization of [2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) (SBMA) or 2-(dimethylamino) ethyl methacrylate (DMAEMA) with 3-(trimethoxysilyl)propyl methacry-late (TMSPMA) was produced utilizing a light-controlled glucose oxidase system to obtain antibacterial adhesive polymer P(TMSPMA-co-SBMA) or antibacterial polymer P(TMSPMA-co-DMAEMA). The two polymers were individually or jointly applied to the cotton fabric using the impregnation-baking method. The chemical structure, element composition, antibacterial properties and anti-dead/live bacteria adhesion properties of the finished fabrics were measured. The results show successful adhesion of two polymers on the cotton fabric. The antibacterial agent finished cotton fabric has a bacteriostatic rate of 99.9% with many dead bacteria on the surface, and the antibacterial adhesion agent finished cotton fabric shows a bacteriostatic rate of more than 85% but with less dead/live bacteria adhering to the fabric surface. The antibacterial and antibacterial adhesion rates of cotton fabrics exceed 98% and 81%, and the surface of the fabric can prevent dead bacteria from adhering.

Key words: glucose oxidase, enzymatic polymerization, antibacterial agent, antibacterial adhesive agent, cotton fabric, antibacterial textiles

CLC Number: 

  • TS195.5

Fig.1

Infrared spectra of unmodified cotton fabric and different finished cotton fabrics. (a) Unmodified cotton fabric, TMSPMA finishing cotton and anti-bacterial finished cotton fabrics;(b) Unmodified cotton fabric, TMSPMA finishing cotton and antibacterial finished cotton fabrics"

Tab.1

Proportion of various elements on surface of different cotton fabrics"

样品 质量分数/%
C N O Si S
未改性棉织物 46.41 0.36 51.98 0.04 1.21
4# 46.15 2.33 48.11 0.60 2.82
8# 45.82 0.54 52.47 0.39 0.79
10# 45.58 2.08 50.14 0.56 1.64

Fig.2

SEM images of different cotton fabrics(×3 000).(a) Unmodified cotton fabric; (b)P(TMSPMA-co-SBMA) finishing cotton fabric; (c)P(TMSPMA-co-DMAEMA) finishing cotton fabric"

Fig.3

Test chart of inhibition zone of different cotton fabrics on S.aureus (a) and E.coli (b)"

Tab.2

Bacteriostatic rate of different modified fabrics against S.aureus and E.coli"

样品类别 编号 抑菌率/%
对金黄色葡萄球菌 对大肠杆菌
未改性棉织物 0 0
P(TMSPMA-co-SBMA)
整理棉织物
3# 88.33 85.00
4# 87.30 89.75
P(TMSPMA-co-DMAEMA)
整理棉织物
5# 95.07 99.56
6# 99.98 99.79
7# 99.94 99.97
8# 99.99 99.90

Tab.3

Adhesion rate of anti live bacteria of modified fabrics with different feed ratios to S.aureus and E.coli"

样品类别 编号 防活细菌黏附率/%
对金黄色葡萄球菌 对大肠杆菌
未改性棉织物 0 0
P(TMSPMA-co-DMAEMA)
整理棉织物
7# 96.06 94.87
8# 98.03 91.81
P(TMSPMA-co-SBMA)
整理棉织物
1# 80.31 79.26
2# 94.48 65.08
3# 91.34 94.39
4# 97.63 93.36

Tab.4

Adhesion rate of anti live bacteria and inhibition rate of different cotton fabrics to S.aureus and E.coli"

样品种类 防活细菌黏附率/% 抑菌率/%
对金黄色葡萄球菌 对大肠杆菌 对金黄色葡萄球菌 对大肠杆菌
未改性棉织物 0 0 0 0
9# 33.67 44.67 99.78 99.92
10# 41.70 68.18 99.15 99.70
11# 81.90 81.06 98.72 99.60

Fig.4

Fluorescent staining patterns of S.aureus (a) and E.coli (b) on different fabrics"

[1] 赵兵, 黄小萃, 祁宁, 等. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(3):188-196.
ZHAO Bing, HUANG Xiaocui, QI Ning, et al. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond[J]. Journal of Textile Research, 2020, 41(3):188-196.
[2] LIN J, CHEN X Y, CHEN C Y, et al. Durably antibacterial and bacterially anti-adhesive cotton fabrics coated by cationic fluorinated polymers[J]. ACS Applied Materials & Interfaces, 2018, 10(7):6124-6136.
[3] LI Y X, FANG X, WANG Y, et al. Highly transparent and water-enabled healable antifogging and frost-resisting films based on poly(vinyl alcohol)-nafion complexes[J]. Chemistry of Materials, 2016, 28(19):6975-6984.
doi: 10.1021/acs.chemmater.6b02684
[4] 韦婷. 具有可控杀菌-释放细菌功能的智能抗菌表面的构建[D]. 苏州: 苏州大学, 2019:2-23.
WEI Ting. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities[D]. Suzhou: Soochow University, 2019:2-23.
[5] ZHU M M, FANG Y, CHEN Y C, et al. Antifouling and antibacterial behavior of membranes containing quaternary ammonium and zwitterionic polymers[J]. Journal of Colloid and Interface Science, 2021, 584:225-235.
doi: 10.1016/j.jcis.2020.09.041
[6] GEORGOUVELAS D, JALVO B, VALENCIAL L, et al. Residual Lignin and zwitterionic polymer grafts on cellulose nanocrystals for antifouling and antibacterial applications[J]. ACS Applied Polymer Materials, 2020, 2(8):3060-3071.
doi: 10.1021/acsapm.0c00212
[7] XU G, NEOH K G, KANG E T, et al. Switchable antimicrobial and antifouling coatings from tannic acid-scaffolded binary polymer brushes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(6):2586-2595.
[8] MA Y, LI J Y, SI Y, et al. Rechargeable antibacterial N-halamine films with antifouling function for food packaging applications[J]. ACS Applied Materials & Interfaces, 2019, 11(19):17814-17822.
[9] LIN X J, JAIN P, WU K, et al. Ultralow fouling and functionalizable surface chemistry based on zwitterionic carboxybetaine random copolymers[J]. Langmuir, 2018, 35(5):1544-1551.
doi: 10.1021/acs.langmuir.8b02540
[10] YAN S J, LUAN S F, SHI H C, et al. Hierarchical polymer brushes with dominant antibacterial mechanisms switching from bactericidal to bacteria repellent[J]. Biomacromolecules, 2016, 17(5):1696-1704.
doi: 10.1021/acs.biomac.6b00115
[11] ZHOU F F, LI R Y, WANG X, et al. Non-natural photoenzymatic controlled radical polymerization inspired by DNA photolyase[J]. Angewandte Chemie, 2019, 131(28):9579-9584.
doi: 10.1002/ange.201904413
[12] SUN H, CHEN X L, HAN X, et al. Dual thermoresponsive aggregation of schizophrenic PDMAEMA-b-PSBMA copolymer with an unrepeatable pH response and a recycled CO2/N2 response[J]. Langmuir, 2017, 33(10):2646-2654.
doi: 10.1021/acs.langmuir.7b00065
[13] WANG B L, YE Z, TANG Y H, et al. Fabrication of nonfouling, bactericidal, and bacteria corpse release multifunctional surface through surface-initiated RAFT polymerization[J]. International Journal of Nanomedicine, 2017, 12(1):111-125.
doi: 10.2147/IJN.S107472
[14] 高思梦, 王鸿博, 杜金梅, 等. 甜菜碱聚合物的合成及其在棉织物抗菌整理中的应用[J]. 纺织学报, 2020, 41(2):89-94.
GAO Simeng, WANG Hongbo, DU Jinmei, et al. Synthesis of polybetaine antibacterial agent and its applications in cotton textiles finishing[J]. Journal of Textile Research, 2020, 41(2):89-94.
[1] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[2] LI Na, WANG Xiao, LI Zhenbao, LI Qian, DU Bing. Preparation and properties of photografted flame-retardant cotton fabrics with modified adenine nucleotide [J]. Journal of Textile Research, 2022, 43(07): 97-103.
[3] LI Pingyang, FU Can, DONG Lingling. Preparation and performance of flame retardant and hydrophobic cotton fabric [J]. Journal of Textile Research, 2022, 43(06): 107-114.
[4] WANG Zongqian, CHENG Lüzhu, JIN Xianhua, XIA Liping. Testing method for permethrin content in cotton fabrics based on use of ultraviolet spectroscopy [J]. Journal of Textile Research, 2022, 43(06): 127-132.
[5] NAN Qingqing, ZENG Qinghong, YUAN Jingxuan, WANG Xiaoqin, ZHENG Zhaozhu, LI Gang. Advances on antibacterial textiles [J]. Journal of Textile Research, 2022, 43(06): 197-205.
[6] LIU Yu, XIE Ruyi, SONG Yawei, QI Yuanzhang, WANG Hui, FANG Kuanjun. One-bath pad dyeing technology for polyester/cotton fabric [J]. Journal of Textile Research, 2022, 43(05): 18-25.
[7] HOU Qianqian, LI Wenxi, ZHAO Meihua. Cyanotype process of cotton fabric under photocatalytic conditions [J]. Journal of Textile Research, 2022, 43(04): 110-116.
[8] WANG Dongwei, FANG Kuanjun, LIU Xiuming, ZHANG Xinqing, AN Fangfang. Preparation of amino-modified Reactive Red 195/polymer nanospheres and its application on dyeing of cotton fabrics [J]. Journal of Textile Research, 2022, 43(04): 90-96.
[9] HE Yingting, LI Min, FU Shaohai. Preparation and reduction-oxidation process of indigo dispersant [J]. Journal of Textile Research, 2022, 43(04): 84-89.
[10] SHI Sheng, WANG Yan, LI Fei, TANG Jiandong, GAO Xiangyu, HOU Wensheng, GUO Hong, WANG Shuhua, JI Jiaqi. Efficient separation of polyester and cotton from waste blended fabrics with dilute oxalic acid solution [J]. Journal of Textile Research, 2022, 43(02): 140-148.
[11] MA Yiping, FAN Wuhou, WU Jinchuan, PU Zongyao. Preparation and application of fully aqueous organic-inorganic hybrid fluorine-free water-repellant finishing agents [J]. Journal of Textile Research, 2022, 43(02): 183-188.
[12] GAO Qiang, WANG Xiao, GUO Yajie, CHEN Ru, WEI Ju. Preparation and performance of cotton based Ti3C2Tx oil-water separation membrane [J]. Journal of Textile Research, 2022, 43(01): 172-177.
[13] ZOU Lihua, YANG Li, LAN Chuntao, RUAN Fangtao, XU Zhenzhen. Electromagnetic shielding properties of graphene oxide/polypyrrole coated cotton fabric with layer-by-layer assembling method [J]. Journal of Textile Research, 2021, 42(12): 111-118.
[14] LIU Xinhua, LIU Hailong, FANG Yinchun, YAN Peng, HOU Guangkai. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid [J]. Journal of Textile Research, 2021, 42(11): 103-109.
[15] XIAN Yongfang, WANG Hongmei, WU Minghua, WANG Lili. Application of low/non-ammonia additives in reactive deep printing [J]. Journal of Textile Research, 2021, 42(11): 89-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .