Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (12): 29-34.doi: 10.13475/j.fzxb.20210604006

• Fiber Materials • Previous Articles     Next Articles

Preparation and charging characteristics analysis of hydro charging polypropylene melt-blown nonwovens

WU Yanjin, WANG Jiang, WANG Hong()   

  1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2021-06-16 Revised:2022-09-22 Online:2022-12-15 Published:2023-01-06
  • Contact: WANG Hong E-mail:wanghong@dhu.edu.cn

Abstract:

In order to study the charged characteristics of water electret melt-blown nonwovens, the hydro charging polypropylene melt-blown nonwoven material was prepared. The influence of water conductivity and drying temperature on the filtration performance of samples was investigated. Atomic force microscope, electrostatic potential tester and thermal stimulation discharge instrument were used to analyze the charging characteristics of the hydro charging melt-blown nonwovens. The synergistic effect of corona discharge and hydro charging was studied as well. The results show that the smaller the conductivity of the water used for the hydro charging, the higher the filtration efficiency of the obtained sample. The drying temperature did not affect the physical and filtration performance of obtained samples. After hydro charging, the potential charge of the melt-blown nonwovens increased significantly with random positive and negative distribution. The surface electrostatic potential is the result of overlapping of the electrostatic potential of each layer of the web. It is speculated that electron transfer and ion transfer occur due to frictions between the positive, negative or neutral water droplets and the fiber, resulting in the high static potential of melt-blown nonwovens.

Key words: hydro charging, melt-blown nonwovens, filter performance, polypropylene, charging characteristic

CLC Number: 

  • TS174.8

Fig.1

Schematic diagram of hydro charging process"

Tab.1

Filtration efficiency of meltblown nonwoven materials prepared with different water quality"

试样名称 电导率/
(μS·cm-1)
过滤效
率/%
纯水 1.3 93.5
去离子水 15.1 87.7
Na2CO3 166.0 78.8
自来水 433.6 60.1

Tab.2

Physical properties of meltlbown nonwovens dyring under different temperature"

试样烘燥条件 面密度/(g·m-2) 厚度/mm 透气率/(mm·s-1)
原始 41.9 0.37 259.1
晾干 42.3 0.37 243.4
110 ℃ 42.1 0.37 242.9
130 ℃ 42.1 0.38 253.6
150 ℃ 42.1 0.37 250.2

Tab.3

Effect of drying conditions on filtration performance of hydro charging meltblown nonwovens"

干燥温度/℃ 过滤阻力/Pa 过滤效率/%
25 127.4 97.8
110 126.4 96.6
130 123.2 95.8
150 124.5 97.4

Fig.2

Surface potential distribution of single fiber"

Fig.3

Surface potential distribution of hydro charging meltblown nonwoven"

Fig.4

Potential distribution diagram of layered hydro charging meltblown nonwoven"

Tab.4

Filtration efficiency of meltblown nonwoven materials prepared with different electret conditions%"

序号 驻极工艺 过滤效率 CV值
1 水驻极 96.0 1.5
2 电晕充电 92.2 1.4
3 水驻极+水驻极 96.3 0.3
4 电晕充电+水驻极 68.9 11.9

Fig.5

Surface potential distribution of corona charging meltblown nonwovens"

Fig.6

Surface potential distribution of corona charging meltblown nonwovens after hydro charging"

Fig.7

Schematic diagram of material charged process"

[1] 沈恒根, 杨磊, 刘刚, 等. 新型医用防护口罩过滤环境气溶胶的性能[J]. 第二军医大学学报, 2003(6): 629-631.
SHEN Henggen, YANG Lei, LIU Gang, et al. Performance of a new mask material in filtering ambient aerosols for medical staff[J]. Academic Journal of Second Military Medical University, 2003(6):629-631.
[2] 温占波, 鹿建春, 李劲松, 等. 口罩滤材对非生物颗粒气溶胶和微生物气溶胶过滤效率的评价[J]. 中国消毒学杂志, 2009, 26(5):487-490.
WEN Zhanbo, LU Jianchun, LI Jinsong, et al. Evaluation on the filtration efficiency of the mask filtration materials against non-biological particles and microbial aerosol[J]. Chinese Journal of Disinfection, 2009, 26(5):487-490.
[3] 侯冠一, 武文杰, 万海肖, 等. 口罩聚丙烯熔喷布的静电机制及其影响因素的研究进展[J]. 高分子通报, 2020(8):1-22.
HOU Guanyi, WU Wenjie, WAN Haixiao, et al. Research progress of static-electricity mechanism and influencing factors of polypropylene melt-blown nonwovens in mask[J]. Chinese Polymer Bulletin, 2020(8):1-22.
[4] 陈曦. 熔喷聚丙烯驻极体空气净化材料应用过程中几个关键问题研究[D]. 杭州: 杭州电子科技大学, 2018:1-7.
CHEN Xi. Research on several key problems aboutmelt-blown polypropylene electret airpurification materials in the process ofapplication[D]. Hangzhou: Hangzhou Dianzi University, 2018:1-7.
[5] ANGADJIVAND S A, JONES M E, MEYER D E. Method of charging electret filter media: US 5496507[P]. 1996-03-05.
[6] ANGADJIVAND S A, SCHWARTZ M G, EITZMAN P D, et al. Method and apparatus for making nonwoven fibrous electret web from free-fiber and polar liquid: US 6375886 B1[P]. 2002-04-23.
[7] HORIGUCHI H, TAKEDA M. Method and device for manufacturing electret processed product: EP 1403418[P]. 2009-03-11.
[8] ANGADJIVAND S A, BRANDNER J M, SPRINGETT J E. Meltblown fiber web with staple fibers: US 2008/0318024 A1[P]. 2010-03-31.
[9] IM K B, HONG Y K. Development of a Melt-blown nonwoven filter for medical masks by hydro charging[J]. Textile Science and Engineering, 2014, 51(4):186-192.
doi: 10.12772/TSE.2014.51.186
[10] 姬苏倩, 朱政辉, 张菁. 不同驻极方式下聚丙烯熔喷非织造布的过滤性能[J]. 合成纤维, 2021, 50(3):35-38.
JI Suqian, ZHU Zhenghui, ZHANG Jing. Research on filtration performance of polypropylene meltblown nonwovens under different electret modes[J]. Synthetic Fiber in China, 2021, 50(3):35-38.
[11] 余翔. 新型电导率和pH水质参数检测技术与实验研究[D]. 杭州: 浙江大学, 2015:2-12.
YU Xiang. The detection technology and experimental research of a new type of electrical conductivity and pH of water quality parameters[D]. Hangzhou: Zhejiang University, 2015:2-12.
[12] KUDIN K N, ROBERTO C. Why are water-hydrophobic interfaces charged?[J]. Journal of The American Chemical Society, 2008, 130(12):3915-3919.
doi: 10.1021/ja077205t pmid: 18311970
[13] 纪思宇. 空气过滤用透明改性驻极无纺布的开发[D]. 天津: 天津工业大学, 2016:8-10.
JI Siyu. Development of transparent modified electret non-woven fabric for air filtration[D]. Tianjin:Tiangong University, 2016:8-10.
[14] LIU B, ZHANG S, WANG X, et al. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration[J]. Journal of Colloid and Interface Science, 2015, 457: 203-211.
doi: 10.1016/j.jcis.2015.07.019 pmid: 26188726
[15] KILIC A, RUSSELL S, SHIM E, et al. Fibrous filter media[M]. Cambridge: Woodhead Publishing, 2017: 95-121.
[16] CHUNG H D, SHIN G. Water behavior based electric generation via charge separation[J]. Nano Energy, 2020, 82:1-7.
[17] LIN S, XU L, CHI WANG A, et al. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer[J]. Nature Communications, 2020, 11(1): 399.
doi: 10.1038/s41467-019-14278-9 pmid: 31964882
[18] 苑亚鹏. 液滴式界面电荷检测技术研究[D]. 大连: 大连海事大学, 2018:3-13.
YUAN Yapeng, Detection of the interface charge of a pedant droplet[D]. Dalian: Dalian Maritime University, 2018:3-13.
[1] WANG Hongjie, YAO Lan, WANG He, ZHANG Zhong. Preparation and electrochemical performances of melt-blown nonwovens electrode from medical mask [J]. Journal of Textile Research, 2022, 43(12): 22-28.
[2] LIANG Jiaojiao, WANG Jingjing, XIA Yumin, ZHU Xinyuan, YAN Bing, SUN Liming, WANG Yanping, HE Yong, WANG Yimin. Preparation and properties of normal pressure-anionic dyeable polypropylene fiber based on polyionic liquid [J]. Journal of Textile Research, 2022, 43(07): 17-21.
[3] WANG Qian, QIAO Yansha, WANG Junshuo, LI Yan, WANG Lu. Preparation of metal phenolic network/zwitterionic polymer coated polypropylene mesh and its resistance to protein adsorption [J]. Journal of Textile Research, 2022, 43(06): 9-14.
[4] ZHAO Jiaming, SUN Hui, YU Bin, YANG Xiaodong. Preparation of CuO/polypropylene/ethylene-octene copolymer composite melt-blown nonwovens and their oil absorption properties [J]. Journal of Textile Research, 2022, 43(02): 89-97.
[5] SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88.
[6] GAO Meng, WANG Zengyuan, LOU Qiwei, CHEN Gangjin. Characteristics of charge capture of melt-blown polypropylene electret nonwovens by corona charging [J]. Journal of Textile Research, 2021, 42(09): 52-58.
[7] LIU Chaojun, LIU Junjie, DING Yike, MA Shaofeng, ZHANG Xiuqin, ZHANG Jianqing. Preparation and properties of expanded polytetrafluoroethylene membrane composites with high dust holding capacity for high efficiency air filtration [J]. Journal of Textile Research, 2021, 42(05): 31-37.
[8] ZHANG Xuefei, LI Tingting, SHIU Bingchiuan, LIN Jiahorng, LOU Chingwen. Preparation of multifunctional core-shell structure thermoelectric fabrics by low-temperature interfacial polymerization [J]. Journal of Textile Research, 2021, 42(02): 174-179.
[9] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[10] WAN Yucai, LIU Ying, WANG Xu, YI Zhibing, LIU Ke, WANG Dong. Structure and property of poly(vinyl alcohol-co-ethylene) nanofiber/polypropylene microfiber scaffold: a composite air filter with high filtration performance [J]. Journal of Textile Research, 2020, 41(04): 15-20.
[11] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process [J]. Journal of Textile Research, 2020, 41(02): 26-32.
[12] LIU Yuhao, SUN Hui, WANG Jieqi, YU Bin. Preparation of TiO2/MIL-88B(Fe)/polypropylene composite melt-blown nonwovens and study on dye degradation properties [J]. Journal of Textile Research, 2020, 41(02): 95-102.
[13] MIAO Miao, WANG Xiaoxu, WANG Ying, LÜ Lihua, WEI Chunyan. Preparation and antistatic property of graphene oxide grafted polypropylene nonwoven fabric [J]. Journal of Textile Research, 2019, 40(11): 125-130.
[14] LIU Jian, MAO Jinlu, PENG Li, CAI Lingyun, ZHENG Xuming, ZHANG Fushan. Performance and regulation of hydrophilic oil agent for polyethylene-polypropylene nonwoven fabrics [J]. Journal of Textile Research, 2019, 40(09): 114-121.
[15] ZHOU Ying, WANG Chuang, ZHU Jiaying, HUANG Linxi, YANG Lili, YU Houyong, YAO Juming, JIN Wanhui. Preparation of controllable ZnO nanoparticles on surface of nonwovens [J]. Journal of Textile Research, 2019, 40(09): 35-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!