Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (10): 1-7.doi: 10.13475/j.fzxb.20210604807

• Academic Salon Column for New Insight of Textile Science and Technology: Key Technology and Application of Dope-dyed Fiber •     Next Articles

Predicting stability of solvent in dope-dyed Lyocell solution based on molecular simulation

JIN Hong1, ZHANG Yue1,2, ZHANG Yumei1,2(), WANG Huaping1,2   

  1. 1. College of Material Science and Engineering, Donghua University, Shanghai 201620, China
    2. Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
  • Received:2021-06-21 Revised:2021-07-12 Online:2021-10-15 Published:2021-10-29
  • Contact: ZHANG Yumei E-mail:zhangym@dhu.edu.cn

Abstract:

In order to study the influence of pigment on the stability of solvent N-methylmorpholine-N-oxide (NMMO) in the preparation of dope-dyed Lyocell fibers, the interaction between NMMO and three representative pigments including metal oxide, carbon material, and organic molecular crystal was studied by molecular simulation in view of the limitations of traditional experimental testing methods. According to the change of N—O equilibrium bond length and O—N—C bond angle of NMMO molecule, the chemical structure of NMMO aqueous solution remains basically unchanged in the presence of titanium dioxide, carbon black, pigment red and indoanthraquinone. Nevertheless the equilibrium bond length of N—O bond obviously becomes longer in the presence of Fe2O3 and copper (II) phthalocyanine, predicting the risk of chemical bond breakage, which is consistent with the existing experimental results. It indicates that molecular simulation method can quickly predict the potential influence of pigments on the stability of NMMO.

Key words: dope-dyed fiber, Lyocell fiber, molecular simulation, solvent, pigment, stability

CLC Number: 

  • TQ341.9

Fig.1

Optimization results of NMMO molecules under different force fields"

Tab.1

Charge of atoms in NMMO"

原子 点电荷(COMPASS)/e 文献[16]点电荷(CHARMM)/e
O1 -0.643 -0.67
O2 -0.320 -0.50
N 0.253 0.44
C(C—O2) 0.154 0.24
C(C—N) 0.024 -0.11
C(CH3) -0.290 -0.33
H 0.053 0.06

Tab.2

Bond length in NMMOnm"

化学键 键长(COMPASS) 文献[15]键长(XRD)
N—O1 0.137 8 0.138 3
N—C 0.147 9~0.148 7 0.149 9~0.148 7
C—O2 0.142 5 0.142 1
C—H 0.109 9~0.110 7 0.10~0.11

Fig.2

Simulation results of different concentrations of aqueous NMMO solution models"

Tab.3

Average number of hydrogen bonds of per water molecule and NMMO molecule in aqueous NMMO solutions models"

NMMO质量分数/% 水-水氢键/个 水-NMMO氢键/个
10 1.42 2.54
30 1.33 2.36
50 1.26 2.15
87 0.62 1.25

Fig.3

Interfacial model between NMMO molecules and pigment crystal planes (initial structure). (a) TiO2(110);(b) CB (001); (c) Fe2O3(010); (d) P.R.255 (110);(e) Copper (II) phthalocyanine (010);(f) Indoanthraquinone (010)"

Fig.4

Simulation results of interfacial models between aqueous NMMO solution and pigment crystal plane"

Fig.5

N—O bond length distribution of NMMO at 363 K"

Tab.4

Influence of different pigment molecules on C—N bond length of NMMO molecule"

颜料 C—N键长/nm
TiO2 0.150 4
CB 0.149 1
Fe2O3 0.148 8
P.R.255 0.149 6
酞菁铜 0.150 9
靛蒽醌 0.149 9

Fig.6

Influence of different pigment crystal surfaces on the distribution of N—O bond length in NMMO molecules."

Fig.7

Influence of different pigment crystal surfaces on evolution of O—N—C bond angle in NMMO molecules. (a) TiO2; (b) CB; (c) Fe2O3; (d) P.R.255; (e) Copper (II) phthalocyanine; (f) Indoanthraquinone"

Fig.8

Oxygen concentration profile of the simulation result of different pigment crystal surfaces/50% aqueous NMMO solution"

Fig.9

Detailed structure of the interface between 50% aqueous NMMO solution and CB surface"

[1] 朱芯娅, 闻井会, 汤雅琪, 等. Lyocell纤维的应用及发展[J]. 辽宁丝绸, 2020(2):54-55.
ZHU Xinya, WEN Jinghui, TANG Yaqi, et al. Application and development of Lyocell fiber[J]. Liaoning Silk, 2020(2):54-55.
[2] 王铁晗, 靳宏, 元伟, 等. 改性Lyocell纤维的研究开发进展[J]. 纺织导报, 2020(7):38-44.
WANG Tiehan, JIN Hong, YUAN Wei, et al. Research and development progress of modified Lyocell fiber[J]. China Textile Leader, 2020(7):38-44.
[3] KONKIN A, WENDLER F, MEISTER F, et al. Degradation processes in the cellulose/N-methylmorpholine-N-oxide system studied by HPLC and ESR. Radical formation/recombination kinetics under UV photolysis at 77 K[J]. Cellulose, 2007, 14(5):457-468.
doi: 10.1007/s10570-007-9140-1
[4] ROSENAU T, POTTHAST A, ADORJAN I, et al. Cellulose solutions inN-methylmorpholine-N-oxide (NMMO)-degradation processes and stabilizers[J]. Cellulose, 2002, 9(3/4):283-291.
doi: 10.1023/A:1021127423041
[5] WENDLER F, KOLBE A, MEISTER F, et al. Thermostability of Lyocell dopes modified with surface active additives[J]. Macromolecular Materials & Engineering, 2005, 290(8):826-832.
[6] ZHANG L, SUN W, XU D, et al. Dope dyeing of lyocell fiber with NMMO-based carbon black dis-persion[J]. Carbohydrate Polymers, 2017, 174:32-38.
doi: 10.1016/j.carbpol.2017.06.020
[7] FU S, DU C, WANG C, et al. Properties of Lyocell spinning solution with the addition of carbon black/latex composite[J]. Colloids & Surfaces A: Physico-chemical & Engineering Aspects, 2013, 428:1-8.
[8] 杨秀琴, 田银彩, 郑玉成, 等. TiO2对棉浆粕/NMMO·H2O溶液流变性能的影响[J]. 合成纤维工业, 2016, 39(6):5-10.
YANG Xiuqin, TIAN Yincai, ZHENG Yucheng, et al. Effect of TiO2 on rheological properties of cotton pulp/NMMO·H2O solution[J]. China Synthetic Fiber Industry, 2016, 39(6):5-10.
[9] 刘怡宁, 张连松, 朱若斐, 等. 氧化法制备Lyocell纤维原液着色用自分散纳米酞菁蓝15:3[J]. 人造纤维, 2019, 49(2):2-7.
LIU Yining, ZHANG Liansong, ZHU Ruofei, et al. Preparation of dope-dyeing Lyocell solution with self-dispersing nano phthalocyanine blue by oxidation method[J]. Artificial Fibre, 2019, 49(2):2-7.
[10] JIN H, KUMI A, ZHANG Y. Interaction between N-methylmorpholine-N-oxide, water and the titanium dioxide surface in lyocell process[J]. Journal of Physical Chemistry A, 2020, 124(42):8653-8659.
doi: 10.1021/acs.jpca.0c06119
[11] JIN H, KUMI A K, CUI S Q, et al. Influence of carbon black with different polar groups on the solvent N-methylmorpholine N-oxide[J]. Coloration Technology, 2021.DOI: 10.1111/cote.12544.
doi: 10.1111/cote.12544
[12] EWALD P P. The calculation of optical and electrostatic grid potential[J]. Annals of Physics, 1921, 64:253.
[13] NOSE S A. Molecular dynamics method for simulations in canonical ensemble[J]. Molecular Physics, 2002, 100:191-198.
doi: 10.1080/00268970110089108
[14] ROSENAU T, HOFINGER A, POTTHAST A, et al. On the conformation of the cellulose solvent N-methylmorpholine-N-oxide (NMMO) in solution[J]. Polymer, 2003, 44:6153-6158.
doi: 10.1016/S0032-3861(03)00663-3
[15] MAIA E, PEGUY A, PEREZ S. Cellulose organic solvents: Ⅰ: the structure of anhydrous NMMO and NMMO monohydrate[J]. Acta Cryst, 1981, 37:1862-1867.
doi: 10.1107/S0567740881007425
[16] KAST K M, BRICKMANN J, KAST S M, et al. Binary phases of aliphatic N-oxides and water: force field development and molecular dynamics simulation[J]. Journal of Physical Chemistry A, 2003, 107(27):5342-5351.
doi: 10.1021/jp027336a
[17] TAN V B C, ZENG X S, DENG M, et al. Multiscale modeling of polymers-the pseudo amorphous cell[J]. Computer Methods in Applied Mechanics & Engineering, 2008, 197(6-8):536-554.
[1] TIAN Xing, SHA Yuan, WANG Bingbing, XIA Yanzhi. Preparation and characterization of sepia melanin alginate fiber [J]. Journal of Textile Research, 2021, 42(10): 22-26.
[2] PAN Yile, QIAN Liying, XU Jigang, HE Beihai, LI Junrong. Analysis on factors influencing solution of Lyocell fiber spinning pulp [J]. Journal of Textile Research, 2021, 42(10): 27-33.
[3] HE Ju, LIU Xiaohui, SU Xiaowei, LIN Shenggen, REN Yuanlin. Preparation and properties of viscose fibers modified with star-shaped halogen-free flame retardants [J]. Journal of Textile Research, 2021, 42(10): 34-40.
[4] SONG Weiguang, WANG Dong, DU Changsen, LIANG Dong, FU Shaohai. Preparation of self-dispersing Phthalocyanine Blue 15:3 particles and its application in spun-dyed viscose fiber [J]. Journal of Textile Research, 2021, 42(10): 8-14.
[5] GAO Meng, WANG Zengyuan, LOU Qiwei, CHEN Gangjin. Characteristics of charge capture of melt-blown polypropylene electret nonwovens by corona charging [J]. Journal of Textile Research, 2021, 42(09): 52-58.
[6] TIAN Miao, LEI Ye, WANG Yunyi, LI Jun, ZHANG Xianghui. Application of age simulation suit for research on gait stability [J]. Journal of Textile Research, 2021, 42(08): 144-148.
[7] WANG Fenping, LI Jiawei, HUANG Huajun, WU Jindan, FU Shaohai, QI Dongming, ZHAO Lei, HE Guiping. Research progress of organic pigment modification technology for textiles coloration [J]. Journal of Textile Research, 2021, 42(07): 192-200.
[8] LIN Shenggen, LIU Xiaohui, SU Xiaowei, HE Ju, REN Yuanlin. Preparation and properties of Lyocell fibers and fabrics modified with new phytic acid based flame retardant [J]. Journal of Textile Research, 2021, 42(07): 25-30.
[9] HUANG Wei, CHENG Chunzu, ZHANG Jiayu, ZHANG Chenxi, CHENG Min, XU Jigang, LIU Yunchong. Preparation and characterization of high fibrillation Lyocell fiber [J]. Journal of Textile Research, 2021, 42(06): 41-45.
[10] WANG Xiaofei, WAN Ailan, SHEN Xinyan. Preparation and strain sensing of dopamine-modified polypyrrole conductive fabric [J]. Journal of Textile Research, 2021, 42(06): 114-119.
[11] WANG Ruifeng, LI Min, TIAN Anli, WANG Chunxia, FU Shaohai. Relationship between Disperse Yellow 6GSL crystal form and thermal stability of its dispersions [J]. Journal of Textile Research, 2021, 42(05): 96-102.
[12] YANG Tingting, GAO Yuanbo, ZHENG Yi, WANG Xueli, HE Yong. Thermal degradation kinetics and pyrolysis products of bio-based polyamide 56 fiber [J]. Journal of Textile Research, 2021, 42(04): 1-7.
[13] HAO Shang, XIE Yuan, WENG Jiali, ZHANG Wei, YAO Jiming. Construction of superhydrophobic surface of cotton fabrics via dissolving etching [J]. Journal of Textile Research, 2021, 42(02): 168-173.
[14] XU Baolü, WU Wei, ZHONG Yi, XU Hong, MAO Zhiping. Simulation study on effect of organic solvents on dispersion and hydrolytic stability of liquid reactive dyes [J]. Journal of Textile Research, 2021, 42(02): 113-121.
[15] WANG Xiaohui, LI Yichen, LIU Guojin, TANG Zuping, ZHOU Lan, SHAO Jianzhong. Preparation and optical properties of flexible photonic crystal film for structural colors [J]. Journal of Textile Research, 2021, 42(02): 12-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!