Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (05): 86-91.doi: 10.13475/j.fzxb.20210606406
• Textile Engineering • Previous Articles Next Articles
YAO Mingyuan1, LIU Ningjuan1, WANG Jianing1, XU Fujun2, LIU Wei1()
CLC Number:
[1] | 白洁. 智能纺织品的分类及其应用[J]. 毛纺科技, 2019, 47(4): 79-83. |
BAI Jie. Classification and application of intelligent texti-les[J]. Wool Textile Journal, 2019, 47(4): 79-83. | |
[2] | 李萍, 蒋晓文. 智能电加热服的研究进展[J]. 棉纺织技术, 2019, 47(9): 79-84. |
LI Ping, JIANG Xiaowen. Research progress of intelligent electric heating clothing[J]. Cotton Textile Technology, 2019, 47(9): 79-84. | |
[3] | 钱江瑞, 蔡彦, 杨允出, 等. 热疗纺织品热性能测试评价及传热机制研究进展[J]. 现代纺织技术, 2020, 28(3): 41-47. |
QIAN Jiangrui, CAI Yan, YANG Yunchu, et al. Research progress on thermal performance evaluation and heat transfer mechanism of hyperthermia textiles[J]. Advanced Textile Technology, 2020, 28(3): 41-47. | |
[4] |
IM H, JANG E Y, CHOI A, et al. Enhancement of heating performance of carbon nanotube sheet with granular metal[J]. Acs Appl Mater Inter, 2012, 4(5): 2338-2342.
doi: 10.1021/am300477u |
[5] |
SHIN K Y, HONG J Y, LEE S, et al. High electrothermal performance of expanded graphite nanoplatelet-based patch heater[J]. J Mater Chem, 2015, 22(44): 23404-23410.
doi: 10.1039/c2jm34196d |
[6] | WAN N, SUN L T, DING S N, et al. Synthesis of graphene-CNT hybrids via joule heating: structural characterization and electrical transport[J]. Carbon, 2013(53): 260-268. |
[7] |
DEVOLDER M F, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: present and future commercial applications[J]. Science, 2013, 339(6119): 535-539.
doi: 10.1126/science.1222453 |
[8] | 贾可, 刘玮, 刘宁娟, 等. 碳纳米管纱线及其复合纤维与纺织品的制备研究现状[J]. 产业用纺织品, 2020, 38(9): 5-12. |
JIA Ke, LIU Wei, LIU Ningjuan, et al. Research status of preparation of carbon nanotube yarn and its composite fiber and textiles[J]. Technical Textiles, 2020, 38(9): 5-12. | |
[9] |
LIU P, LIU L, JIANG K, et al. Carbon nanotube film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays[J]. Small, 2011, 7(6): 732-736.
doi: 10.1002/smll.201001662 |
[10] | LUO Jie, LU Huifen, ZHANG Qichong, et al. Flexible carbon nanotube/polyurethane electrothermal films[J]. Carbon, 2016(110): 343-349. |
[11] |
POST E R, ORTH M, RUSSO P R, et al. E-broidery: design and fabrication of textile-based computing[J]. IBM Systems Journal, 2000, 39(3): 840-860.
doi: 10.1147/sj.393.0840 |
[12] |
LI Y, SHANG Y, HE X, et al. Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators[J]. ACS Nano, 2013, 7(9): 8128-8135.
doi: 10.1021/nn403400c |
[13] |
SHANG Y, LI Y, HE X, et al. Highly twisted double-helix carbon nanotube yarns[J]. ACS Nano, 2013, 7(2):1446-1453.
doi: 10.1021/nn305209h |
[14] | YAN J, JEONG Y G. Highly elastic and transparent multiwalled carbon nanotube/polydimethylsiloxane bilayer films as electric heating materials[J]. Materials & Design, 2015, 36(86): 72-9. |
[1] | ZHANG Xuefei, LI Tingting, SHIU Bingchiuan, LIN Jiahorng, LOU Chingwen. Preparation of multifunctional core-shell structure thermoelectric fabrics by low-temperature interfacial polymerization [J]. Journal of Textile Research, 2021, 42(02): 174-179. |
[2] | MO Dajie, LI Xuming, XU Zenghui. Preparation and properties of poly(3-hydroxybutyrate-co-3-hydroxyl valerate)/polylactic acid flame retardant fibersMO [J]. Journal of Textile Research, 2019, 40(05): 12-17. |
[3] | . Miscibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and polypropylene grafting maleic anhydride [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 33-37. |
[4] | . Study on spinnability of biodegradable Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) / poly(lactic acid) blends for melt-blown nonwovens [J]. Journal of Textile Research, 2016, 37(2): 21-26. |
|