Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 212-218.doi: 10.13475/j.fzxb.20210607707
• Comprehensive Review • Previous Articles Next Articles
DAI Yanyang1, WANG Shitan1, WANG Yunyi1,2, LI Jun1,2()
CLC Number:
[1] | MANDAL S, CAMENZIND M, ANNAHEIM S, et al. Firefighters’ protective clothing and equipment: performance, protection, and comfort[M]. Boca Raton: Taylor & Francis Group, 2019: 31-47. |
[2] | WEN S. Physiological strain and physical burden in chemical protective coveralls[D]. Alberta: University of Alberta, 2014: 115-159. |
[3] |
DING L, LI X, HEDGE A, et al. Optimizing the physical ergonomics indices for the use of partial pressure suits[J]. Applied Ergonomics, 2015, 47: 72-83.
doi: 10.1016/j.apergo.2014.08.021 pmid: 25479976 |
[4] | TAYLOR N A S, PEOPLES G E, PETERSEN S R. Load carriage, human performance, and employment standards[J]. Applied Physiology Nutrition and Metabolism, 2016, 41(6): 131-147. |
[5] |
DORMAN L E, HAVENITH G. The effects of protective clothing on energy consumption during different activi-ties[J]. European Journal of Applied Physiology, 2009, 105(3): 463-470.
doi: 10.1007/s00421-008-0924-2 |
[6] | JUSSILA K, VALKAMA A, REMES J, et al. The effect of cold protective clothing on comfort and perception of performance[J]. International Journal of Occupational Safety & Ergonomics, 2010, 16(2): 185-197. |
[7] | 何佳臻, 李俊. 防护服工效性能评价方法研究进展[J]. 纺织学报, 2014, 35(1): 158-164. |
HE Jiazhen, LI Jun. Advances in research of ergonomic evaluation for protective clothing[J]. Journal of Textile Research, 2014, 35(1): 158-164. | |
[8] |
HAVENITH G, HEUS R. A test battery related to ergonomics of protective clothing[J]. Applied Ergonomics, 2004, 35: 3-20.
pmid: 14985136 |
[9] | ASHDOWN S P. Improving body movement comfort in apparel[M]. Cambridge: Woodhead Publishing Limited, 2011: 278-302. |
[10] | 王诗潭, 王云仪. 防护服活动性及其对职业骨肌损伤影响的研究进展[J]. 丝绸, 2018, 55(8): 52-59. |
WANG Shitan, WANG Yunyi. Research progress on protective clothing mobility and its impact on musculoskeletal injury[J]. Journal of Silk, 2018, 55(8): 52-59. | |
[11] |
RENBERG J, CHRISTIANSEN M T, WIGGEN Q N, et al. Metabolic rate and muscle activation level when wearing state-of-the-art cold-weather protective clothing during level and inclined walking[J]. Applied Ergonomics, 2020, 82: 102956.
doi: 10.1016/j.apergo.2019.102956 |
[12] |
LENTON G K, DOYLE T L A, SAXBY D J, et al. Integrating a hip belt with body armour reduces the magnitude and changes the location of shoulder pressure and perceived discomfort in soldiers[J]. Ergonomics, 2018, 61(4): 566-575.
doi: 10.1080/00140139.2017.1381278 pmid: 28918698 |
[13] |
PARK H, BRANSON D, KIM S, et al. Effect of armor and carrying load on body balance and leg muscle function[J]. Gait & Posture 2014, 39(1): 430-435.
doi: 10.1016/j.gaitpost.2013.08.018 |
[14] | 宋蛟龙, 王博岩. 军事训练伤流行病学分析及对策探索[J]. 临床医药文献杂志, 2019, 6(18): 180-181. |
SONG Jiaolong, WANG Boyan. Epidemiological analysis of military training injuries and exploration of countermeasures[J]. Journal of Clinical Medical, 2019, 6(18): 180-181. | |
[15] |
FROST D M, BEACH T A C, CROSBY I, et al. Firefighter injuries are not just a fireground problem[J]. Work, 2015, 52(4): 835-842.
doi: 10.3233/WOR-152111 pmid: 26409354 |
[16] |
GÓMEZ L, DíAZ C A, OROZCO G A, et al. Dynamic analysis of forces in the lumbar spine during bag carry-ing[J]. International Journal of Occupational Safety Ergonomics, 2018, 24(4): 605-613.
doi: 10.1080/10803548.2017.1352224 |
[17] |
O'LEARY T J, SAUNDERS S C, MCGUIRE S J, et al. Sex differences in neuromuscular fatigability in response to load carriage in the field in British Army recruits[J]. Journal of Science and Medicine in Sport, 2018, 21(6): 591-595.
doi: S1440-2440(17)31668-7 pmid: 29100827 |
[18] |
LENTON G, DOYLE T, LLOYD D, et al. Lower-limb joint work and power are modulated differently during load carriage based on speed and load configuration[J]. Journal of Biomechanics, 2019, 83: 174-180.
doi: 10.1016/j.jbiomech.2018.11.036 |
[19] |
PARK K, SY J F, HORN G P, et al. Assessing gait changes in firefighters after firefighting activities and while carrying asymmetric loads[J]. Applied Ergonomics, 2018, 70: 44-50.
doi: S0003-6870(18)30024-3 pmid: 29866324 |
[20] | LAFIANDRA M, HARMAN E. The distribution of forces between the upper and lower back during load carriage[J]. Medicine & Science in Sports & Exercise, 2004, 36(3): 460-467. |
[21] |
TAY C S, LEE J K W, TEO Y S, et al. Using gait parameters to detect fatigue and responses to ice slurry during prolonged load carriage[J]. Gait & Posture, 2016, 43: 17-23.
doi: 10.1016/j.gaitpost.2015.10.010 |
[22] | LOONEY D P, DOUGHTY E M, FIGUEIREDO P S, et al. Effects of modern military backpack loads on walking speed and cardiometabolic responses of US Army Soldiers[J]. Applied Ergonomics, 2021, 94: 1-6. |
[23] |
KESLER R M, DEETJEN G S, BRADLEY F F, et al. Impact of SCBA size and firefighting work cycle on firefighter functional balance[J]. Applied Ergonomics, 2018, 69: 112-119.
doi: S0003-6870(18)30014-0 pmid: 29477318 |
[24] |
BAGGALEY M, ESPOSITO M, XU C, et al. Effects of load carriage on biomechanical variables associated with tibial stress fractures in running[J]. Gait & Posture, 2020, 77: 190-194.
doi: 10.1016/j.gaitpost.2020.01.009 |
[25] |
PARK K, ROSENGREN K S, HORN G P, et al. Assessing gait changes in firefighters due to fatigue and protective clothing[J]. Safety Science, 2011, 49(5): 719-726.
doi: 10.1016/j.ssci.2011.01.012 |
[26] |
HINDE K, LLOYD R, LOW C, et al. The effect of temperature, gradient, and load carriage on oxygen consumption, posture, and gait characteristics[J]. European Journal of Applied Physiology, 2017, 117(3): 417-430.
doi: 10.1007/s00421-016-3531-7 pmid: 28154976 |
[27] | YOO B. The effect of carrying a military backpack on a transverse slope and sand surface on lower limb during gait[D]. State of Utah: the University of Utah, 2014: 18-70. |
[28] |
CHOW D, LEUNG D, HOLMES A D. The effects of load carriage and bracing on the balance of schoolgirls with adolescent idiopathic scoliosis[J]. European Spine Journal, 2007, 16(9): 1351-1358.
pmid: 17340156 |
[29] |
BISWAS A, LEMAIRE E D, KOFMAN J. Dynamic gait stability index based on plantar pressures and fuzzy logic[J]. Journal of Biomechanics, 2008, 41(7): 1574-1581.
doi: 10.1016/j.jbiomech.2008.02.009 pmid: 18395211 |
[30] |
CASTRO M, ABREU S, SOUSA H, et al. Ground reaction forces and plantar pressure distribution during occasional loaded gait[J]. Applied Ergonomics, 2013, 44(3): 503-509.
doi: 10.1016/j.apergo.2012.10.016 pmid: 23157973 |
[31] |
GOFFAR S L, REBER R J, CHRISTIANSEN B, et al. Changes in dynamic plantar pressure during loaded gait[J]. Physical Therapy, 2013, 93(9): 1175-1184.
doi: 10.2522/ptj.20120103 pmid: 23580629 |
[32] |
TILBURY-DAVIS D C, HOOPER R H. The kinetic and kinematic effects of increasing load carriage upon the lower limb[J]. Human Movement Science, 1999, 18(5): 693-700.
doi: 10.1016/S0167-9457(99)00026-3 |
[33] |
BIRRELL S A, HASLAM R A. The effect of load distribution within military load carriage systems on the kinetics of human gait[J]. Applied Ergonomics, 2010, 41(4): 585-590.
doi: 10.1016/j.apergo.2009.12.004 pmid: 20060096 |
[34] |
LLOYD R, COOKE C B. Kinetic changes associated with load carriage using two rucksack designs[J]. Ergonomics, 2000, 43(9): 1331-1341.
pmid: 11014755 |
[35] |
BIRRELL S A, HOOPER R H, HASLAM R A. The effect of military load carriage on ground reaction forces[J]. Gait & Posture, 2007, 26(4): 611-614.
doi: 10.1016/j.gaitpost.2006.12.008 |
[36] |
CHANG W R, CHANG C C, MATZ S, et al. A methodology to quantify the stochastic distribution of friction coefficient required for level walking[J]. Applied Ergonomics, 2008, 39(6): 766-771.
doi: 10.1016/j.apergo.2007.11.003 |
[37] | BARNETT LIPSEY R. ″Slip and Fall″ theory: extreme order statistics[J]. International Journal of Occupational Safety & Ergonomics, 2002, 8(2): 135-158. |
[38] |
MURRAY S L, SIMON Y L, SHENG H. The effects of chemical protective suits on human performance[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(6): 774-779.
doi: 10.1016/j.jlp.2011.06.001 |
[39] | O’HEARN B E, BENSEL C K, POLCYN A F. Biomechanical analyses of body movement and locomotion as affected by clothing and footwear for cold weather climates[R]. U.S. Army Research, Development and Engineering Command Natick Soldier Center, 2005:1-6. |
[40] |
PARK H, TREJO H, MILES M, et al. Impact of firefighter gear on lower body range of motion[J]. International Journal of Clothing Science and Technology, 2015, 27(2): 315-334.
doi: 10.1108/IJCST-01-2014-0011 |
[41] |
LIN X, ZHAI L, ZHANG M, et al. Ergonomic evaluation of protective clothing for earthquake disaster search and rescue team members[J]. International Journal of Clothing Science and Technology, 2016, 28(6): 820-829.
doi: 10.1108/IJCST-11-2015-0124 |
[42] |
BOYD L, ROGERS T, DOCHERTY D, et al. Variability in performance on a work simulation test of physical fitness for firefighters[J]. Applied Physiology Nutrition Metabolism, 2015, 40(4): 364-370.
doi: 10.1139/apnm-2014-0281 |
[43] |
CHOU C, UMEZAKI S, SON S Y, et al. Effects of wearing trousers or shorts under firefighting protective clothing on physiological and subjective responses[J]. Journal of the Human-Environment System, 2009, 12(2): 63-71.
doi: 10.1618/jhes.12.63 |
[44] | AN S K. Laboratory assessment of range of motion and pressure associated with female soldiers wearing a ballistic vest[D]. Stillwater Oklahoma: Oklahoma State University, 2010: 95-108. |
[45] |
KIM S H, NEUSCHWANDER T B, MACIAS B R, et al. Upper extremity hemodynamics and sensation with backpack loads[J]. Applied Ergonomics, 2014, 45(3): 608-612.
doi: 10.1016/j.apergo.2013.08.005 pmid: 24075289 |
[46] |
MAO C P, MACIAS B R, HARGENS A R. Shoulder skin and muscle hemodynamics during backpack carri-age[J]. Applied Ergonomics, 2015, 51: 80-84.
doi: 10.1016/j.apergo.2015.04.006 |
[47] | HADID A, KATZ I, HAKER T, et al. Effect of load carriage on upper limb performance[J]. Medicine & Science in Sports & Exercise, 2016, 49(5): 1006-1014. |
[48] | DUAN T, HUANG B, LI X, et al. Real-time indicators and influence factors of muscle fatigue in push-type work[J]. International Journal of Industrial Ergonomics, 2020, 80(2): 30-46. |
[49] |
PISCIONE J, GAMET D. Effect of mechanical compression due to load carrying on shoulder muscle fatigue during sustained isometric arm abduction: an electromyographic study[J]. European Journal of Applied Physiology, 2006, 97(5): 573-581.
pmid: 16767438 |
[50] |
MATSUMOTO T, ITO K, MORITANI T. The relationship between anaerobic threshold and electromyographic fatigue threshold in college women[J]. European Journal of Applied Physiology and Occupational Physiology, 1991, 63(1): 1-5.
pmid: 1915324 |
[51] |
JAMES S, DAMIAN C, MATHEW B. Energy cost and knee extensor strength changes following multiple day military load carriage[J]. Applied Ergonomics, 2021, 97: 103503.
doi: 10.1016/j.apergo.2021.103503 |
[52] |
ROSE J D, MENDEL E, S. M W. Carrying and spine loading[J]. Ergonomics, 2013, 56(11): 1722-1732.
doi: 10.1080/00140139.2013.835870 pmid: 24073718 |
[53] |
QUESADA P M, MENGELKOCH L J, HALE R C, et al. Biomechanical and metabolic effects of varying backpack loading on simulated marching[J]. Ergonomics, 2000, 43(3): 293-309.
pmid: 10755654 |
[54] |
SHYMON S, HARGENS A R, MINKOFF L A, et al. Body posture and backpack loading: an upright magnetic resonance imaging study of the adult lumbar spine[J]. European Spine Journal, 2014, 23(7): 1407-1413.
doi: 10.1007/s00586-014-3247-5 pmid: 24619606 |
[55] |
CHOW H K, HIN K F, OU D, et al. Carry-over effects of backpack carriage on trunk posture and repositioning ability[J]. International Journal of Industrial Ergonomics, 2011, 41(5): 530-535.
doi: 10.1016/j.ergon.2011.04.001 |
[1] | LI Chenfei, LIU Yuanjun, ZHAO Xiaoming. Research progress of biochemical protective clothing [J]. Journal of Textile Research, 2022, 43(07): 207-216. |
[2] | MA Liang, LI Jun. Application progress in cold protective clothing based on multiple intelligent technologies [J]. Journal of Textile Research, 2022, 43(06): 206-214. |
[3] | ZHU Xiaorong, HE Jiazhen, WANG Min. Application research progress in phase change materials for thermal protective clothing [J]. Journal of Textile Research, 2022, 43(04): 194-202. |
[4] | ZHANG Wenhuan, LI Jun. Research progress in heat transfer mechanism of firefighter protective clothing under low-level radiant heat exposures [J]. Journal of Textile Research, 2021, 42(10): 190-198. |
[5] | YU Zhicai, LIU Jinru, HE Hualing, MA Shengnan, JIANG Huiyu. Research and application progress in fire retardant fabric based on polymeric hydrogel [J]. Journal of Textile Research, 2021, 42(09): 180-186. |
[6] | JIANG Lulu, DENG Meng, WANG Yunyi, LI Jun. Research progress on application of aerogel materials in firefighting clothing [J]. Journal of Textile Research, 2021, 42(09): 187-194. |
[7] | LIU Yang, XIA Zhaopeng, WANG Liang, FAN Jie, ZENG Qiang, LIU Yong. Development status and trend of antivirus medical protective clothing [J]. Journal of Textile Research, 2021, 42(09): 195-202. |
[8] | WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30. |
[9] | ZHENG Qing, WANG Zhaojie, WANG Hongbo, WANG Min, KE Ying. Development and performance evaluation of thermal protective clothing for moped cycling [J]. Journal of Textile Research, 2021, 42(07): 158-163. |
[10] | NIU Mengyu, PAN Shuwen, DAI Hongqin, LÜ Kaimin. Relationship between thermal-moist comfort of medical protective clothing and human fatigue [J]. Journal of Textile Research, 2021, 42(07): 144-150. |
[11] | WANG Xiaobo, QIAN Xiaoming, WANG Lijing, LIU Yongsheng, BAI He. Review on liquid cooling garment and its feasibility study in fire fighting [J]. Journal of Textile Research, 2021, 42(06): 198-207. |
[12] | ZHANG Tingting, ZHANG Jie, TIAN Xinyu, CHEN Zhen, REN Wei. Recent progress in gas-tight chemical protective clothing [J]. Journal of Textile Research, 2020, 41(12): 174-181. |
[13] | MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121. |
[14] | ZHAI Li'na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196. |
[15] | WANG Fenglong, WANG Jianming, ZHOU Yitian, ZHAO Minghui. Study on liquid absorption performance of water absorbing resin [J]. Journal of Textile Research, 2020, 41(09): 21-26. |