Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 192-199.doi: 10.13475/j.fzxb.20210608108
• Comprehensive Review • Previous Articles Next Articles
WANG Jin1,2, HU Kairui2, ZHANG Liufei3, CHEN Lei2()
CLC Number:
[1] |
GOOGENOUGH J B, PARK K S. The Li-Ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135 (4): 1167-1176.
doi: 10.1021/ja3091438 pmid: 23294028 |
[2] | 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41 (12): 157-165. |
WANG Qilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41 (12): 157-165. | |
[3] | 孙悦, 范杰, 王亮, 等. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39 (12): 131-138. |
SUN Yue, FAN Jie, WANG Liang, et al. Research progress of wearable technology in textiles and apparels[J]. Journal of Textile Research, 2018, 39(12): 131-138. | |
[4] |
YU X, FU Y P, CAI X, et al. Flexible fiber-type zinc-carbon battery based on carbon fiber electrodes[J]. Nano Energy, 2013, 2 (6): 1242-1248.
doi: 10.1016/j.nanoen.2013.06.002 |
[5] |
HAN S L, HAO Y N, GUO Z Y, et al. Self-supported N-doped NiSe2 hierarchical porous nanoflake arrays for efficient oxygen electrocatalysis in flexible zinc-zir batteries[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.126088.
doi: 10.1016/j.cej.2020.126088 |
[6] |
CHENG Y H, GUO Y J, ZHANG N Y, et al. In situ growing catalytic sites on 3D carbon fiber paper as self-standing bifunctional air electrodes for air-based flow batteries[J]. Nano Energy, 2019.DOI: 10.1016/j.nanoen.2019.103897.
doi: 10.1016/j.nanoen.2019.103897 |
[7] |
YANG C, LI Y Z, ZHANG B B, et al. Nitrogen-doped carbon fibers embedding CoO(X)nanoframes towards wearable energy storage[J]. Nanoscale, 2020, 12 (16): 8922-8933.
doi: 10.1039/D0NR00582G |
[8] |
WU M G, WANG Y Q, WEI Z X, et al. Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air batteries dagger[J]. Journal of Materials Chemistry A, 2018, 6 (23): 10918-10925.
doi: 10.1039/C8TA02416B |
[9] |
WANG L, WANG Y Q, WU M G, et al. Nitrogen,Fluorine, and Boron ternary doped carbon fibers as cathode electrocatalysts for zinc-air batteries[J]. Small, 2018.DOI: 10.1002/smll.201800737.
doi: 10.1002/smll.201800737 |
[10] |
CHONG Y N, PAN Z H, SU M, et al. 1D/2D hierarchical Co1-xFexO@N-doped carbon nanostructures for flexible Zinc-Air batteries[J]. Electrochimica Acta, 2020. DOI: 10.1016/j.electacta.2020.137264.
doi: 10.1016/j.electacta.2020.137264 |
[11] |
CHEN X, LIU B, ZHONG C, et al. Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display[J]. Advanced Energy Materials, 2017.DOI: 10.1002/aenm.201700779.
doi: 10.1002/aenm.201700779 |
[12] |
JAVED M S, CHEN J, CHEN L, et al. Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage[J]. Journal of Materials Chemistry A, 2016, 4 (2): 667-674.
doi: 10.1039/C5TA08752J |
[13] | WU X Y, HAN X P, MA X Y, et al. Morphology-controllable synthesis of Zn-Co-Mixed sulfide nanostructures on carbon fiber paper toward efficient rechargeable zinc-air batteries and water electrolysis[J]. Acs Applied Materials & Interfaces, 2017, 9 (14): 12574-12583. |
[14] |
HE B, ZHOU Z Y, MAN P, et al. V2O5 Nanosheets supported on 3D N-doped carbon nanowall arrays as an advanced cathode for high energy and high power fiber-shaped zinc-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7 (21): 12979-12986.
doi: 10.1039/C9TA01164A |
[15] |
YU M H, WANG Z K, HOU C, et al. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201602868.
doi: 10.1002/adma.201602868 |
[16] |
DONG W, SHI J L, WANG T S, et al. 3D zinc@carbon fiber composite framework anode for aqueous Zn-MnO2 batteries[J]. Rsc Advances, 2018, 8 (34): 19157-19163.
doi: 10.1039/C8RA03226B |
[17] |
DONG H B, LI J W, ZHAO S Y, et al. An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(43): 22637-22644.
doi: 10.1039/D0TA07086F |
[18] |
GUAN Q, LI Y P, BI X X, et al. Dendrite-free flexible fiber-shaped Zn battery with long cycle life in water and air[J]. Advanced Energy Materials, 2019. DOI: 10.1002/aenm.201901434.
doi: 10.1002/aenm.201901434 |
[19] |
QIAN Y, MENG C, HE J X, et al. A lightweight 3D Zn@Cu nanosheets@activated carbon cloth as long-life anode with large capacity for flexible zinc ion batteries[J]. Journal of Power Sources, 2020. DOI: 10.1016/j.jpowsour.2020.228871.
doi: 10.1016/j.jpowsour.2020.228871 |
[20] |
WANG H F, TANG C, WANG B, et al. Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc-air batteries[J]. Energy Storage Materials, 2018, 15: 124-130.
doi: 10.1016/j.ensm.2018.03.022 |
[21] |
LI B, GE X M, GOH F W T, et al. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries[J]. Nanoscale, 2015, 7 (5): 1830-1838.
doi: 10.1039/C4NR05988C |
[22] |
SHANG C Q, YANG M Y, WANG Z Y, et al. Encapsulated mno in N-doping carbon nanofibers as efficient orr electrocatalysts[J]. Science China-Materials, 2017, 60 (10): 937-946.
doi: 10.1007/s40843-017-9103-1 |
[23] |
LIANG H W, WU Z Y, CHEN L F, et al. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery[J]. Nano Energy, 2015, 11: 366-376.
doi: 10.1016/j.nanoen.2014.11.008 |
[24] |
DENG D J, TIAN Y H, LI H N, et al. Electrospun Fe, N co-doped porous carbon nanofibers with Fe4N species as a highly efficient oxygen reduction catalyst for rechargeable zinc-air batteries[J]. Applied Surface Science, 2019, 492: 417-425.
doi: 10.1016/j.apsusc.2019.06.237 |
[25] | YUAN G H, JIN H F, ZHAO Y. Reduced graphene oxide wrapped sulfur/polypyrrole composite cathode with enhanced cycling and rate performance for lithium/sulfur batteries[J]. International Journal of Electrochemical Science, 2019, 14 (2): 1763-1772. |
[26] |
WANG Z, ANG J M, ZHANG B W, et al. Feco/feconi/N-doped carbon nanotubes grafted polyhedron-derived hybrid fibers as bifunctional oxygen electrocatalysts for durable rechargeable zinc-air battery[J]. Applied Catalysis B-Environmental, 2019, 254: 26-36.
doi: 10.1016/j.apcatb.2019.04.027 |
[27] |
WANG Z, ANG J M, LIU J, et al. FeNi alloys encapsulated in N-doped cnts-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery[J]. Applied Catalysis B-Environmental, 2020. DOI: 10.1016/j.apcatb.2019.118344.
doi: 10.1016/j.apcatb.2019.118344 |
[28] |
LIU X H, OUYANG M Z, ORZECH M W, et al. In-situ fabrication of carbon-metal fabrics as freestanding electrodes for high-performance flexible energy storage devices[J]. Energy Storage Materials, 2020, 30: 329-336.
doi: 10.1016/j.ensm.2020.04.001 |
[29] |
CHEN Y S, ZHANG W H, ZHU Z Y, et al. Co nanoparticles combined with nitrogen-doped graphitic carbon anchored on carbon fibers as a self-standing air electrode for flexible zinc-air batteries[J]. Journal of Materials Chemistry A, 2020, 8 (15): 7184-7191.
doi: 10.1039/D0TA00793E |
[30] |
YANG Y, YAND F, SUN C J, et al. Ru-Fe alloy mediated alpha-Fe2O3 particles on mesoporous carbon nanofibers as electrode materials with superior capacitive performance[J]. Rsc Advances, 2017, 7 (12): 6818-6826.
doi: 10.1039/C6RA27324F |
[31] |
SUN J, ZENG L, JIANG H R, et al. Formation of electrodes by self-assembling porous carbon fibers into bundles for vanadium redox flow batteries[J]. Journal of Power Sources, 2018, 405: 106-113.
doi: 10.1016/j.jpowsour.2018.10.035 |
[32] |
TIAN L D, JI D X, ZHANG S, et al. A humidity-induced nontemplating route toward hierarchical porous carbon fiber hybrid for efficient bifunctional oxygen catalysis[J]. Small, 2020.DOI: 10.1002/smll.202001743.
doi: 10.1002/smll.202001743 |
[33] |
LIU Q, WANG Y B, DAI L M, et al. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries[J]. Advanced Materials, 2016, 28 (15): 3000-3006.
doi: 10.1002/adma.201506112 |
[34] |
LIU J P, GUAN C, ZHOU C, et al. A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design[J]. Advanced Materials, 2016, 28 (39): 8732-8739.
doi: 10.1002/adma.201603038 |
[35] |
YANG Y, ZENG D H, YANG S J, et al. Nickel cobaltite nanosheets coated on metal-organic framework-derived mesoporous carbon nanofibers for high-performance pseudocapacitors[J]. Journal of Colloid and Interface Science, 2019, 534: 312-321.
doi: S0021-9797(18)31110-X pmid: 30241061 |
[36] |
SATO Y, KOWALSKI D, AOKI Y, et al. Long-term durability of platelet-type carbon nanofibers for OER and ORR in highly alkaline media[J]. Applied Catalysis A-General, 2020.DOI: 10.1016/j.apcata.2020.117555.
doi: 10.1016/j.apcata.2020.117555 |
[37] |
JIANG K L, WANG J P, LI Q Q, et al. Superaligned carbon nanotube arrays, films, and yarns: a road to applications[J]. Advanced Materials, 2011, 23 (9): 1154-1161.
doi: 10.1002/adma.201003989 |
[38] |
LEE J M, CHOI C, KIM J H, et al. Biscrolled carbon nanotube yarn structured silver-zinc battery[J]. Scientific Reports, 2018.DOI: 10.1038/s41598-018-29266-0.
doi: 10.1038/s41598-018-29266-0 |
[39] | WANG K, ZHANG X H, HANG J W, et al. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode[J]. Acs Applied Materials & Interfaces, 2018, 10 (29): 24573-24582. |
[40] |
ZHANG Q C, LI C W, LI Q L, et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery[J]. Nano Letters, 2019, 19 (6): 4035-4042.
doi: 10.1021/acs.nanolett.9b01403 pmid: 31082244 |
[41] |
JARERNBOON W, IAMTIPUENG P, PIMANPANG S, et al. Preparation of the natural carbon fiber from narrow-leaved cattails (typha angustifolia linn.) flower for using as the cathode catalyst in the zinc-air fuel cell[J]. Materials Today-Proceedings, 2018, 5 (6): 14002-14008.
doi: 10.1016/j.matpr.2018.02.052 |
[42] |
LI C, DING Y W, HU B C, et al. Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels[J]. Advanced Materials, 2020, 32 (2): 1904331.
doi: 10.1002/adma.201904331 |
[43] |
HUANG Y, IP W S, LAU Y Y, et al. A weavable, conductive yarn-based NiCo/Zn textile battery with high energy density and rate capability[J]. ACS Nano, 2017, 11 (9): 8953-8961.
doi: 10.1021/acsnano.7b03322 |
[44] |
LI P P, JIN Z Y, XIAO D. Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds[J]. Energy Storage Materials, 2018, 12: 232-240.
doi: 10.1016/j.ensm.2017.11.017 |
[45] |
JIAN Z, YANG N J, VOGEL M, et al. Flexible diamond fibers for high-energy-density zinc-ion supercapacitors[J]. Advanced Energy Materials, 2020.DOI: 10.1002/aenm.202002202.
doi: 10.1002/aenm.202002202 |
[46] |
WANG L P, LI N W, WANG T S, et al. conductive graphite fiber as a stable host for zinc metal anodes[J]. Electrochimica Acta, 2017, 244: 172-177.
doi: 10.1016/j.electacta.2017.05.072 |
[47] |
ZHANG X S, PEI Z X, WANG C J, et al. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics[J]. Small, 2019.DOI: 10.1002/smll.201903817.
doi: 10.1002/smll.201903817 |
[48] | LI H F, HAN C P, HUANG Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte[J]. Energy & Environmental Science, 2018, 11 (4): 941-951. |
[49] |
MA L T, CHEN S M, WANG D H, et al. Super-stretchable zinc air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte[J]. Advanced Energy Materials, 2019.DOI: 10.1002/aenm.201803046.
doi: 10.1002/aenm.201803046 |
|