Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 192-199.doi: 10.13475/j.fzxb.20210608108

• Comprehensive Review • Previous Articles     Next Articles

Application progress of fiber materials in flexible wearable zinc batteries

WANG Jin1,2, HU Kairui2, ZHANG Liufei3, CHEN Lei2()   

  1. 1. School of Arts, Tiangong University, Tianjin 300387, China
    2. School of Textile Science and Engineering,Tiangong University, Tianjin 300387, China
    3. Jiangyin Customs District P.R. China, Wuxi, Jiangsu 214400, China
  • Received:2021-06-30 Revised:2022-05-07 Online:2022-10-15 Published:2022-10-28
  • Contact: CHEN Lei E-mail:chenlei@tiangong.edu.cn

Abstract:

In order to promote the application of zinc ion batteries with high safety and low cost in flexible energy storage devices, the paper takes fiber-based zinc ion batteries as the object and firstly clarifies the mechanism of zinc anode oxidation and transition metal oxide or oxygen positive cathode reduction in the process of charge and discharge proccess. Secondly, fibers such as carbon fiber, carbon nanofiber, carbon nanotube yarn, metal fiber and other inorganic fiber in the cathode, anode and electrolyte of flexible zinc battery are reviewed. The effects of different preparation processes, microstructure and modification strategies on the electrochemical characteristics of fiber-based flexible batteries are analyzed and compared, and the main parameters affecting its performance are defined. At last, it is proposed that the structural ordered design of fibers has a significant effect on improving the electrochemical performance of batteries, and the broad development prospect of natural fiber based electrode materials is emphasized. This paper has a positive significance for accelerating the industrial application of intelligent clothing and helping to realize the vision of "carbon peak and carbon neutralization" as soon as possible.

Key words: fiber-based material, flexible zinc battery, microstructure, electrochemical property

CLC Number: 

  • TQ028.2

Tab.1

Comparison of electrochemical characteristics of zinc batteries based on different fiber materials"

正极材料 负极材料 电解质 比容量 能量密度 功率密度 循环性能 文献
钢纤维/NiCO(OH)x 不锈钢纤维/锌 PVA/Zn(CH3COO)2 5 mA·h/cm3 0.12 mW·h/cm2 32.8 mW/cm2 [43]
Mn-NiOx/Cu Zn/Li插层TiO2 PVA/KOH 19.6 mA·h/cm3 0.034 Wh·/cm3 17.5 W/cm3 20 000圈后放电容量95% [44]
NiO/CNFs/碳布 ZnO/CNFs/碳布 PVA/KOH 265 mA·h/g 7.76 mW·h/cm3 0.54 W/cm3 1 000圈后放电容量91.45% [34]
空气/N-NiSe2/碳布 锌箔 KOH/丙烯酸/
K2S2O8水凝胶
504 mA·h/g [5]
空气/Co1-xFexO-NC/
碳布
锌箔 KOH/醋酸锌 673 mA·h/g [10]
空气/N-Co3O4 锌包覆碳织物 碱性凝胶电解质 603.7 mA·h/g [15]
空气/Co3O4/碳纳米纤维 锌箔 KOH/ZnCl2溶液 125 mW/cm2 [21]
空气/Fe-CNFs 锌箔 KOH/醋酸锌 135 mW/cm2 [24]
空气/FeNi/N-CNTs 锌箔 KOH/醋酸锌 751 mA·h/g 917 W·h/kg 160.6 mW/cm2 960圈后无放电电压损耗 [27]
空气/Co/Co3O4杂化多孔CNFs 锌箔 KOH/Zn(CH3COO)2 748.5 mA·h/g 102 mW/cm2 [33]
空气/杂化多孔CNFs 锌箔 KOH/Zn(CH3COO)2 626 mA·h/g 776 W·h/kg 185 mW/cm2 500圈后电压间
隙增长0.13 V
[33]
铁氰化锌/CNTs 锌/CNTs ZnSO4/纤维素 100.2 mA·h/cm3 195.4 mW·h/cm3 200圈后放电容量91.8% [39]
MnO2/CNTs 锌线 ZnCl2/PVA 290 mA·h/g 360 W·h/kg 100圈后放电容量98% [54]
[1] GOOGENOUGH J B, PARK K S. The Li-Ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135 (4): 1167-1176.
doi: 10.1021/ja3091438 pmid: 23294028
[2] 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41 (12): 157-165.
WANG Qilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41 (12): 157-165.
[3] 孙悦, 范杰, 王亮, 等. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39 (12): 131-138.
SUN Yue, FAN Jie, WANG Liang, et al. Research progress of wearable technology in textiles and apparels[J]. Journal of Textile Research, 2018, 39(12): 131-138.
[4] YU X, FU Y P, CAI X, et al. Flexible fiber-type zinc-carbon battery based on carbon fiber electrodes[J]. Nano Energy, 2013, 2 (6): 1242-1248.
doi: 10.1016/j.nanoen.2013.06.002
[5] HAN S L, HAO Y N, GUO Z Y, et al. Self-supported N-doped NiSe2 hierarchical porous nanoflake arrays for efficient oxygen electrocatalysis in flexible zinc-zir batteries[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.126088.
doi: 10.1016/j.cej.2020.126088
[6] CHENG Y H, GUO Y J, ZHANG N Y, et al. In situ growing catalytic sites on 3D carbon fiber paper as self-standing bifunctional air electrodes for air-based flow batteries[J]. Nano Energy, 2019.DOI: 10.1016/j.nanoen.2019.103897.
doi: 10.1016/j.nanoen.2019.103897
[7] YANG C, LI Y Z, ZHANG B B, et al. Nitrogen-doped carbon fibers embedding CoO(X)nanoframes towards wearable energy storage[J]. Nanoscale, 2020, 12 (16): 8922-8933.
doi: 10.1039/D0NR00582G
[8] WU M G, WANG Y Q, WEI Z X, et al. Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air batteries dagger[J]. Journal of Materials Chemistry A, 2018, 6 (23): 10918-10925.
doi: 10.1039/C8TA02416B
[9] WANG L, WANG Y Q, WU M G, et al. Nitrogen,Fluorine, and Boron ternary doped carbon fibers as cathode electrocatalysts for zinc-air batteries[J]. Small, 2018.DOI: 10.1002/smll.201800737.
doi: 10.1002/smll.201800737
[10] CHONG Y N, PAN Z H, SU M, et al. 1D/2D hierarchical Co1-xFexO@N-doped carbon nanostructures for flexible Zinc-Air batteries[J]. Electrochimica Acta, 2020. DOI: 10.1016/j.electacta.2020.137264.
doi: 10.1016/j.electacta.2020.137264
[11] CHEN X, LIU B, ZHONG C, et al. Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display[J]. Advanced Energy Materials, 2017.DOI: 10.1002/aenm.201700779.
doi: 10.1002/aenm.201700779
[12] JAVED M S, CHEN J, CHEN L, et al. Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage[J]. Journal of Materials Chemistry A, 2016, 4 (2): 667-674.
doi: 10.1039/C5TA08752J
[13] WU X Y, HAN X P, MA X Y, et al. Morphology-controllable synthesis of Zn-Co-Mixed sulfide nanostructures on carbon fiber paper toward efficient rechargeable zinc-air batteries and water electrolysis[J]. Acs Applied Materials & Interfaces, 2017, 9 (14): 12574-12583.
[14] HE B, ZHOU Z Y, MAN P, et al. V2O5 Nanosheets supported on 3D N-doped carbon nanowall arrays as an advanced cathode for high energy and high power fiber-shaped zinc-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7 (21): 12979-12986.
doi: 10.1039/C9TA01164A
[15] YU M H, WANG Z K, HOU C, et al. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201602868.
doi: 10.1002/adma.201602868
[16] DONG W, SHI J L, WANG T S, et al. 3D zinc@carbon fiber composite framework anode for aqueous Zn-MnO2 batteries[J]. Rsc Advances, 2018, 8 (34): 19157-19163.
doi: 10.1039/C8RA03226B
[17] DONG H B, LI J W, ZHAO S Y, et al. An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(43): 22637-22644.
doi: 10.1039/D0TA07086F
[18] GUAN Q, LI Y P, BI X X, et al. Dendrite-free flexible fiber-shaped Zn battery with long cycle life in water and air[J]. Advanced Energy Materials, 2019. DOI: 10.1002/aenm.201901434.
doi: 10.1002/aenm.201901434
[19] QIAN Y, MENG C, HE J X, et al. A lightweight 3D Zn@Cu nanosheets@activated carbon cloth as long-life anode with large capacity for flexible zinc ion batteries[J]. Journal of Power Sources, 2020. DOI: 10.1016/j.jpowsour.2020.228871.
doi: 10.1016/j.jpowsour.2020.228871
[20] WANG H F, TANG C, WANG B, et al. Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc-air batteries[J]. Energy Storage Materials, 2018, 15: 124-130.
doi: 10.1016/j.ensm.2018.03.022
[21] LI B, GE X M, GOH F W T, et al. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries[J]. Nanoscale, 2015, 7 (5): 1830-1838.
doi: 10.1039/C4NR05988C
[22] SHANG C Q, YANG M Y, WANG Z Y, et al. Encapsulated mno in N-doping carbon nanofibers as efficient orr electrocatalysts[J]. Science China-Materials, 2017, 60 (10): 937-946.
doi: 10.1007/s40843-017-9103-1
[23] LIANG H W, WU Z Y, CHEN L F, et al. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery[J]. Nano Energy, 2015, 11: 366-376.
doi: 10.1016/j.nanoen.2014.11.008
[24] DENG D J, TIAN Y H, LI H N, et al. Electrospun Fe, N co-doped porous carbon nanofibers with Fe4N species as a highly efficient oxygen reduction catalyst for rechargeable zinc-air batteries[J]. Applied Surface Science, 2019, 492: 417-425.
doi: 10.1016/j.apsusc.2019.06.237
[25] YUAN G H, JIN H F, ZHAO Y. Reduced graphene oxide wrapped sulfur/polypyrrole composite cathode with enhanced cycling and rate performance for lithium/sulfur batteries[J]. International Journal of Electrochemical Science, 2019, 14 (2): 1763-1772.
[26] WANG Z, ANG J M, ZHANG B W, et al. Feco/feconi/N-doped carbon nanotubes grafted polyhedron-derived hybrid fibers as bifunctional oxygen electrocatalysts for durable rechargeable zinc-air battery[J]. Applied Catalysis B-Environmental, 2019, 254: 26-36.
doi: 10.1016/j.apcatb.2019.04.027
[27] WANG Z, ANG J M, LIU J, et al. FeNi alloys encapsulated in N-doped cnts-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery[J]. Applied Catalysis B-Environmental, 2020. DOI: 10.1016/j.apcatb.2019.118344.
doi: 10.1016/j.apcatb.2019.118344
[28] LIU X H, OUYANG M Z, ORZECH M W, et al. In-situ fabrication of carbon-metal fabrics as freestanding electrodes for high-performance flexible energy storage devices[J]. Energy Storage Materials, 2020, 30: 329-336.
doi: 10.1016/j.ensm.2020.04.001
[29] CHEN Y S, ZHANG W H, ZHU Z Y, et al. Co nanoparticles combined with nitrogen-doped graphitic carbon anchored on carbon fibers as a self-standing air electrode for flexible zinc-air batteries[J]. Journal of Materials Chemistry A, 2020, 8 (15): 7184-7191.
doi: 10.1039/D0TA00793E
[30] YANG Y, YAND F, SUN C J, et al. Ru-Fe alloy mediated alpha-Fe2O3 particles on mesoporous carbon nanofibers as electrode materials with superior capacitive performance[J]. Rsc Advances, 2017, 7 (12): 6818-6826.
doi: 10.1039/C6RA27324F
[31] SUN J, ZENG L, JIANG H R, et al. Formation of electrodes by self-assembling porous carbon fibers into bundles for vanadium redox flow batteries[J]. Journal of Power Sources, 2018, 405: 106-113.
doi: 10.1016/j.jpowsour.2018.10.035
[32] TIAN L D, JI D X, ZHANG S, et al. A humidity-induced nontemplating route toward hierarchical porous carbon fiber hybrid for efficient bifunctional oxygen catalysis[J]. Small, 2020.DOI: 10.1002/smll.202001743.
doi: 10.1002/smll.202001743
[33] LIU Q, WANG Y B, DAI L M, et al. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries[J]. Advanced Materials, 2016, 28 (15): 3000-3006.
doi: 10.1002/adma.201506112
[34] LIU J P, GUAN C, ZHOU C, et al. A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design[J]. Advanced Materials, 2016, 28 (39): 8732-8739.
doi: 10.1002/adma.201603038
[35] YANG Y, ZENG D H, YANG S J, et al. Nickel cobaltite nanosheets coated on metal-organic framework-derived mesoporous carbon nanofibers for high-performance pseudocapacitors[J]. Journal of Colloid and Interface Science, 2019, 534: 312-321.
doi: S0021-9797(18)31110-X pmid: 30241061
[36] SATO Y, KOWALSKI D, AOKI Y, et al. Long-term durability of platelet-type carbon nanofibers for OER and ORR in highly alkaline media[J]. Applied Catalysis A-General, 2020.DOI: 10.1016/j.apcata.2020.117555.
doi: 10.1016/j.apcata.2020.117555
[37] JIANG K L, WANG J P, LI Q Q, et al. Superaligned carbon nanotube arrays, films, and yarns: a road to applications[J]. Advanced Materials, 2011, 23 (9): 1154-1161.
doi: 10.1002/adma.201003989
[38] LEE J M, CHOI C, KIM J H, et al. Biscrolled carbon nanotube yarn structured silver-zinc battery[J]. Scientific Reports, 2018.DOI: 10.1038/s41598-018-29266-0.
doi: 10.1038/s41598-018-29266-0
[39] WANG K, ZHANG X H, HANG J W, et al. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode[J]. Acs Applied Materials & Interfaces, 2018, 10 (29): 24573-24582.
[40] ZHANG Q C, LI C W, LI Q L, et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery[J]. Nano Letters, 2019, 19 (6): 4035-4042.
doi: 10.1021/acs.nanolett.9b01403 pmid: 31082244
[41] JARERNBOON W, IAMTIPUENG P, PIMANPANG S, et al. Preparation of the natural carbon fiber from narrow-leaved cattails (typha angustifolia linn.) flower for using as the cathode catalyst in the zinc-air fuel cell[J]. Materials Today-Proceedings, 2018, 5 (6): 14002-14008.
doi: 10.1016/j.matpr.2018.02.052
[42] LI C, DING Y W, HU B C, et al. Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels[J]. Advanced Materials, 2020, 32 (2): 1904331.
doi: 10.1002/adma.201904331
[43] HUANG Y, IP W S, LAU Y Y, et al. A weavable, conductive yarn-based NiCo/Zn textile battery with high energy density and rate capability[J]. ACS Nano, 2017, 11 (9): 8953-8961.
doi: 10.1021/acsnano.7b03322
[44] LI P P, JIN Z Y, XIAO D. Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds[J]. Energy Storage Materials, 2018, 12: 232-240.
doi: 10.1016/j.ensm.2017.11.017
[45] JIAN Z, YANG N J, VOGEL M, et al. Flexible diamond fibers for high-energy-density zinc-ion supercapacitors[J]. Advanced Energy Materials, 2020.DOI: 10.1002/aenm.202002202.
doi: 10.1002/aenm.202002202
[46] WANG L P, LI N W, WANG T S, et al. conductive graphite fiber as a stable host for zinc metal anodes[J]. Electrochimica Acta, 2017, 244: 172-177.
doi: 10.1016/j.electacta.2017.05.072
[47] ZHANG X S, PEI Z X, WANG C J, et al. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics[J]. Small, 2019.DOI: 10.1002/smll.201903817.
doi: 10.1002/smll.201903817
[48] LI H F, HAN C P, HUANG Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte[J]. Energy & Environmental Science, 2018, 11 (4): 941-951.
[49] MA L T, CHEN S M, WANG D H, et al. Super-stretchable zinc air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte[J]. Advanced Energy Materials, 2019.DOI: 10.1002/aenm.201803046.
doi: 10.1002/aenm.201803046
[1] CHEN Kang, CHEN Gaofeng, WANG Qun, WANG Gang, ZHANG Yumei, WANG Huaping. Influence of heat-treatment tension in post-processing on structural properties of high modulus low shrinkage industrial polyester fibers [J]. Journal of Textile Research, 2022, 43(10): 10-15.
[2] REN Libing, CHEN Li, JIAO Wei. Microstructure characterization of multi-layer interlocked woven preforms based on quadratic functions [J]. Journal of Textile Research, 2021, 42(08): 76-83.
[3] CHEN Yu, XIA Xin. Preparation and electrochemical properties of liquid GaSn self-repairing anode materials for lithium-ion batteries [J]. Journal of Textile Research, 2021, 42(06): 57-62.
[4] XIAO Yuan, LI Hongying, LI Qian, ZHANG Wei, YANG Pengcheng. Preparation of flexible sensor with composite dielectric layer of cotton fabric/polydimethylsiloxane [J]. Journal of Textile Research, 2021, 42(05): 79-83.
[5] ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126.
[6] LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling. Preparation and electrochemical properties of MnO2/graphene/cotton fabric composite electrode [J]. Journal of Textile Research, 2020, 41(01): 96-101.
[7] BAI He, QIAN Xiaoming, FAN Jintu, QIAN Yao, LIU Yongsheng, WANG Xiaobo. Theoretical model for number of fiber contacts in fibrous porous materials [J]. Journal of Textile Research, 2019, 40(12): 21-26.
[8] ZHAO Jinyang, SUN Yao, ZHANG Xin, ZHANG Yueyue, ZHAO Haoyue, XIA Xin. Morphology and structure reconstruction and mechanism of Sn/C nanofibers anode for lithium battery [J]. Journal of Textile Research, 2019, 40(08): 7-13.
[9] XIAO Yuan, YIN Bo, LI Lanxin, LIU Huanhuan. Influence of process conditions on silver conductive lines by micro-droplet jet printing solution reaction [J]. Journal of Textile Research, 2019, 40(05): 78-83.
[10] LIU Huijie, XIA Xin. Influence of deep cryogenic treatment temperature on lithium electrical properties of SnSb/C nanofiber anode material [J]. Journal of Textile Research, 2019, 40(04): 38-43.
[11] . Preparation and properties of orientation reinforced composite separator for lithium-ion battery [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 8-14.
[12] . High-performance polyimide fiber and its weavability [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 14-19.
[13] . Simulation analysis of woven fabric electromagnetic shielding effectiveness using finite integration technique [J]. Journal of Textile Research, 2016, 37(2): 155-160.
[14] . Structure and physical properties of willow fibers [J]. Journal of Textile Research, 2016, 37(01): 23-27.
[15] . Study on propreties of regenerated cattle skin collagen fiber [J]. Journal of Textile Research, 2015, 36(04): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!