Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 22-28.doi: 10.13475/j.fzxb.20210608607

• Fiber Materials • Previous Articles     Next Articles

Preparation of aqueous dispersion system of bisneopentyl glycol dithiopyrophosphate and its application in flame-retardant viscose fiber

XIONG Yonghui1,2, WANG Dong1, DU Changsen2, FU Shaohai1()   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Suzhou Sunmun Technology Co., Ltd., Kunshan, Jiangsu 215337, China
  • Received:2021-06-30 Revised:2022-02-18 Online:2022-07-15 Published:2022-07-29
  • Contact: FU Shaohai E-mail:shaohaifu@hotmail.com

Abstract:

To decrease the particle size of bisneopentyl glycol dithiopyrophosphate (DDPS), and improve the interface compatibility with viscose fibers (VF), the DDPS aqueous dispersion was prepared using non-ionic polyoxyethylene ether dispersants through an ultra-fine processing technology. The influence of dispersant structure on the particle size of DDPS was explored, the response surface method was used to optimize the ultra-fine process parameters. The DDPS aqueous dispersion was then blended into viscose spinning dope, and flame-retardant viscose fibers were prepared through the wet spinning process. The flame-retardant properties of the fibers were explored. The results show that the combination of tallow amine polyoxyethylene ether (TA10) and castor oil polyoxyethylene ether (EL90) has better synergistic dispersion effect for DDPS. With 4 h grinding time, 1 700 r/min grinding speed, and 1.2:1 mass ratio of TA10 to EL90, the median particle size of the DDPS dispersion system is 0.310 μm. The DDPS is evenly distributed in the flame-retardant viscose spinning dope and does not affect the spinnability of viscose collagen solution. Compared to VF, the peak heat release rate of flame-retardant viscose fibers decreases by 18.8 % and the limiting oxygen index increases from 19% to 31.31% when DDPS is 20%.

Key words: bisneopentyl glycol dithiopyrophosphate, responce surface experiment, particle size distribution, viscose fiber, flame retardancy

CLC Number: 

  • TS193.5

Tab.1

Analysis factors and levels for response surface"

水平 A
时间/h
B
转速/(r·min-1)
C
TA10与EL90质量比
-1 3.5 1 000 1:1
0 4.0 1 500 2:1
+1 4.5 2 000 3:1

Fig.1

Measuring principle of separation analyzer"

Fig.2

D50 trend curve over grinding time.(a)Effect of dispersant type on D50;(b)Effect of type of compound dispersant on D50"

Fig.3

Effect of grinding time(a), grinding speed(b)and mass ratio of TA10 to EL90(c)on D50"

Tab.2

Results of response surface tests"

试验组编号 时间/h 转速/
(r·min-1)
TA10与
EL90质量比
粒径/μm
1 3.5 1 500 1:1 0.494
2 3.5 2 000 2:1 0.437
3 4.0 1 000 1:1 0.467
4 4.0 1 500 2:1 0.338
5 4.0 1 500 2:1 0.338
6 4.5 1 500 3:1 0.422
7 4.5 2 000 2:1 0.383
8 4.0 1 500 2:1 0.338
9 4.5 1 500 1:1 0.426
10 3.5 1 000 2:1 0.679
11 4.0 1 500 2:1 0.338
12 4.0 1 500 2:1 0.338
13 3.5 1 500 3:1 0.534
14 4.0 2 000 1:1 0.338
15 4.0 1 000 3:1 0.581
16 4.0 2 000 3:1 0.427
17 4.5 1 000 2:1 0.614

Tab.3

Variance analysis of response surface for particle size"

来源 平方和 自由度 均方 F P 显著性
模型 0.177 7 9 0.019 7 16.33 0.000 7 显著
X 0.011 2 1 0.011 2 9.24 0.018 8
Y 0.071 4 1 0.071 4 59.09 0.000 1
Z 0.007 1 1 0.007 1 5.91 0.045 4
XY 0.000 0 1 0.000 0 0.03 0.878 8
XZ 0.000 5 1 0.000 5 0.40 0.547 0
YZ 0.000 2 1 0.000 2 0.13 0.729 8
X2 0.044 7 1 0.044 7 36.94 0.000 5
Y2 0.032 1 1 0.032 1 26.51 0.001 3
Z2 0.003 3 1 0.003 3 2.73 0.142 5
残差 0.008 5 7 0.001 2
失拟误差 0.008 5 3 0.002 8
纯误差 0.000 0 4 0.000 0
总离差 0.186 1 16

Tab.4

Normalized deviation and standard deviation analysis result for experimental verification"

样品
编号
时间/
h
转速/
(r·min-1)
TA10与
EL90质量比
粒径中值/μm N/% Ns/%
理论 试验
1# 4.3 1 800 1.6:1 0.325 0.370 8.63 9.77
2# 4.2 1 950 2.2:1 0.331 0.334
3# 4.1 1 850 1.8:1 0.308 0.359
4# 4.0 1 700 1.2:1 0.310 0.335
5# 4.4 1 950 1.9:1 0.360 0.332

Fig.4

Particle size distribution(a)and SEM image (b)of DDPS dispersion system"

Fig.5

Analysis of rheological properties of viscose dope"

Fig.6

Distribution of DDPS in viscose spinning dope. (a)Viscose spinning dope;(b)Flame-retardant viscose spinning dope"

Fig.7

Heat release rate curve of viscose fiber before and after flame-retardant treatment"

[1] WOLF R. Flame retardant viscose rayon containing a pyrophosphate[J]. Industrial & Engineering Chemistry Product Research and Development, 1981, 20(3),413-420.
[2] 马君志, 葛红, 王冬, 等. 阻燃粘胶纤维的制备及性能研究[J]. 棉纺织技术, 2020, 48(10): 20-23.
MA Junzhi, GE Hong, WANG Dong, et al. Preparation and property study of flame-retardant viscose fiber[J]. Cotton Textile Technology, 2020, 48(10): 20-23.
[3] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(3): 15-19, 38.
MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber/dithiopyrophosphate incorporated with graphene oxide[J]. Journal of Textile Research, 2020, 41(3): 15-19, 38.
[4] 马君志, 葛红, 王冬, 等. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(1): 10-15.
MA Junzhi, GE Hong, WANG Dong, et al. Preparation and properties of sol-gel modified flame retardant viscose fiber[J]. Journal of Textile Research, 2021, 42(1): 10-15.
doi: 10.1177/004051757204200103
[5] BAI Yingchen, LIN Daohui, WU Fengchang, et al. Adsorption of triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions[J]. Chemosphere, 2010, 79:362-367.
doi: 10.1016/j.chemosphere.2010.02.023 pmid: 20206374
[6] 张钰, 张军平, 李垚, 等. 超分散剂的研究及应用现状[J]. 玻璃钢/复合材料, 2012 (6):86-88,40
ZHANG Yu, ZHANG Junping, LI Yao, et al. Research and application status of hyper dispersants[J]. FRP/Composite Materials, 2012(6): 86-88, 40.
[7] 潘勇. 用于分散有机颜料和炭黑的润湿分散剂的选择[J]. 涂料工业, 2018, 48(8): 25-30.
PAN Yong. Selection of wetting and dispersing additives for dispersion of organic and carbon black pigments[J]. Paint & Coatings Industry, 2011, 41(5): 74-79.
[8] 郑仕远, 吴奇财, 周朝霞, 等. 超细粉体的水性超分散剂研究进展[J]. 涂料工业, 2011, 41(5): 74-79.
ZHENG Shiyuan, WU Qicai, ZHOU Chaoxia, et al. Progress in hyper-dispersant for ultrafine powder in water[J]. Paint & Coatings Industry, 2011, 41(5): 74-79.
[9] GIRAUD I, FRANCESCHI-MESSANT S, PEREZ E, et al. Preparation of aqueous dispersion of thermoplastic sizing agent for carbon fiber by emulsion/solvent evaporation[J]. Applied Surface Science, 2013, 266:94-99.
doi: 10.1016/j.apsusc.2012.11.098
[10] 蔺勇刚. Sb2O3/DOP/PVC阻燃复合材料的制备及性能研究[D]. 兰州: 兰州理工大学, 2020: 30-31.
LIN Yonggang. Preparation of Sb2O3/DOP/PVC flame retardant composites and research on its properties[D]. Lanzhou: Lanzhou University of Technology, 2020: 30-31.
[11] 张湘汉, 刘三民, 宋永娇, 等. Lyocell/二硫代焦磷酸酯阻燃纤维的制备及其阻燃机理研究[J]. 合成纤维工业, 2016, 39(5): 23-27.
ZHANG Xianghan, LIU Sanmin, SONG Yongjiao, et al. Preparation and flame retardant mechanism of Lyocell /bisneophentyl glycol dithiopyrophosphate flame-retardant fiber[J]. China Synthetic Fiber Industry, 2016, 39(5): 23-27.
[1] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[2] LI Na, WANG Xiao, LI Zhenbao, LI Qian, DU Bing. Preparation and properties of photografted flame-retardant cotton fabrics with modified adenine nucleotide [J]. Journal of Textile Research, 2022, 43(07): 97-103.
[3] LIU Suo, WANG Yaqian, WEI Anfang, ZHAO Lei, FENG Quan. Preparation of functional spunlaced viscose fiber membrane and its application for laccase immobilization [J]. Journal of Textile Research, 2022, 43(05): 124-129.
[4] LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy [J]. Journal of Textile Research, 2022, 43(01): 1-8.
[5] HE Ju, LIU Xiaohui, SU Xiaowei, LIN Shenggen, REN Yuanlin. Preparation and properties of viscose fibers modified with star-shaped halogen-free flame retardants [J]. Journal of Textile Research, 2021, 42(10): 34-40.
[6] SONG Weiguang, WANG Dong, DU Changsen, LIANG Dong, FU Shaohai. Preparation of self-dispersing Phthalocyanine Blue 15:3 particles and its application in spun-dyed viscose fiber [J]. Journal of Textile Research, 2021, 42(10): 8-14.
[7] LIU Suo, WU Dingsheng, LI Man, ZHAO Lingling, FENG Quan. Preparation of spunlaced viscose/polyaniline composite fiber membrane and its adsorption performance [J]. Journal of Textile Research, 2021, 42(08): 122-127.
[8] NI Jie, YANG Jianping, YU Chongwen. Effect of ratio of strands twist factor to single yarn twist factor on properties of viscose plied yarns [J]. Journal of Textile Research, 2021, 42(05): 46-50.
[9] WANG Huaqing, YAN Hongqiang. Construction of bio-based three-component self-assembled coating for flame retardancy of ramie fabrics [J]. Journal of Textile Research, 2021, 42(04): 132-138.
[10] MA Junzhi, GE Hong, WANG Dong, FU Shaohai. Preparation and properties of sol-gel modified flame retardant viscose fiber [J]. Journal of Textile Research, 2021, 42(01): 10-15.
[11] YANG Xiaobing, CHENG Jun, ZHANG Shouxin, YAO Hong, LU Lin, DING Songtao. Particle size conversion for mask filter efficiency test and comparability of different standards [J]. Journal of Textile Research, 2020, 41(08): 152-157.
[12] LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14.
[13] MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber/dithiopyrophosphate incorporated with graphene oxide [J]. Journal of Textile Research, 2020, 41(03): 15-19.
[14] DANG Danyang, CUI Lingyan, WANG Liang, LIU Yong. Preparation and properties of cellulose nanofiber/montmorillonite composite aerogels [J]. Journal of Textile Research, 2020, 41(02): 1-6.
[15] SUN Yufa, ZHOU Xiangdong. Synthesis and characterization of novel phosphorous and nitrogen-containing flame retardant for cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 79-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .