Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 40-47.doi: 10.13475/j.fzxb.20210608708

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of poly(lactic acid)/ZnO fiber with antibacterial and anti-ultraviolet functions

ZHU Yanlong1,2, GU Yingshu1,2, GU Xiaoxia1,2, DONG Zhenfeng1,2, WANG Bin1,2, ZHANG Xiuqin1,2()   

  1. 1. Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Engineering Research Center of Textile Nano Fiber, Beijing 100029, China
  • Received:2021-06-30 Revised:2022-01-25 Online:2022-08-15 Published:2022-08-24
  • Contact: ZHANG Xiuqin E-mail:clyzxq@bift.edu.cn

Abstract:

In order to endow poly(lactic acid)( PLA ) fiber with high anti-ultraviolet and antibacterial properties, PLA/ZnO blends with different mass ratios were prepared via melt blending method applying ZnO as functional particles. According to the morphology, thermal properties, anti-ultraviolet and antibacterial properties of the blends, the optimal mass ratio of the blend was chosen which was further fabricated into PLA/ZnO fiber through melt spinning. When the mass fraction of ZnO masterbatch was 5% with the mass fraction of ZnO being 0.85%, ZnO particles were uniformly distributed in the PLA matrix. The PLA/ZnO blend exhibited good thermal stability, excellent anti\|ultraviolet and antibacterial properties. The ultraviolet protection coefficient reached 663, and the antibacterial rate against Escherichia coli and Staphylococcus aureus was more than 99%. Moreover, the PLA/ZnO blend fiber showed good spinnability with crystallinity reaching more than 30% and the fiber strength meeting the weaving requirements. The ultraviolet transmittance of the prepared PLA/ZnO fabric is less than 30%, and its antibacterial rate against Escherichia coli and Staphylococcus aureus is as high as 99%, which can also be maintained after 10 washes.

Key words: functional fiber, poly(lactic acid) fiber, zinc oxide, blending modification, antibacterial property, anti-ultraviolet property, melt spinning

CLC Number: 

  • TQ316.67

Tab.1

Proportion of pure PLA and its blends%"

样品编号 PLA质量分数 ZnO母粒质量分数
PLA 100 0
PLA/ZnO–3 97 3
PLA/ZnO–5 95 5
PLA/ZnO–10 90 10

Fig.1

PLA/ZnO blend fiber (a) and fabric (b)"

Fig.2

SEM images of cross section of pure PLA and its blends"

Fig.3

DSC curves of pure PLA and its blends. (a) First cooling curves; (b) Secondarytemperature rise curves"

Fig.4

TG(a)and DTG(b)curves of pure PLA and its blends"

Fig.5

Ultraviolet transmission curves of pure PLA and PLA/ZnO film"

Tab.2

Anti\|ultraviolet properties of pure PLA and PLA/ZnO film"

样品编号 平均UVA
透过率/%
平均UVB
透过率/%
UPF
平均值
PLA 83.80 65.32 1.43
PLA/ZnO–3 7.98 0.40 137
PLA/ZnO–5 2.45 0.06 663
PLA/ZnO–10 2.78 0.06 601

Tab.3

Antibacterial properties of pure PLA and PLA/ZnO film"

样品编号 抑菌率/%
对大肠杆菌 对金黄色葡萄球菌
PLA 29 54
PLA/ZnO–3 29 46
PLA/ZnO–5 >99 >99
PLA/ZnO–10 >99 >99

Fig.6

2-D WAXS patterns(a) and 1-D WAXS intensity profiles (b) of fibers"

Tab.4

Mechanical property data of fibers"

纤维名称 断裂强度/(cN·dtex–1) 断裂伸长率/%
PLA 3.4±0.1 23.9±1.5
PLA/ZnO–5 2.8±0.1 26.5±1.3

Fig.7

Ultraviolet transmission curves of fabric"

Fig.8

Antibacterial properties of fabrics against Escherichia coli and Staphylococcus aureus. (a) PLA fabric; (b) PLA/ZnO–5 fabric"

[1] 盛宇, 徐丽慧, 孟云, 等. 用SiO2/TiO2复合气凝胶制备超疏水光催化防紫外线织物[J]. 纺织学报, 2019, 40(7): 90-96.
SHENG Yu, XU Lihui, MENG Yun, et al. Preparation of superhydrophobic, photocatalytic and UV-blocking textiles based on SiO2/TiO2 composite aerogels[J]. Journal of Textile Research, 2019, 40(7): 90-96.
[2] YAN Z, JIAN J, TING L, et al. A molecularly engineered bioderived polyphosphate for enhanced flame retardant, UV-blocking and mechanical properties of poly(lactic acid)[J]. Chemical Engineering Journal, 2021, 411(7): 128493-128506.
doi: 10.1016/j.cej.2021.128493
[3] MARRA A, SILVESTRE C, DURACCIO D, et al. Polylactic acid/zinc oxide biocomposite films for food packaging application[J]. International Journal of Biological Macromolecules, 2016, 88: 254-262.
doi: 10.1016/j.ijbiomac.2016.03.039
[4] JIANG N, LI Y M, Y K, et al. Effect of short jute fibers on the hydrolytic degradation behavior of poly(lactic acid)[J]. Polymer Degradation and Stability, 2020, 178: 109214-109226.
doi: 10.1016/j.polymdegradstab.2020.109214
[5] YANG B, WANG R, MA H L, et al. Structure mediation and properties of poly(L-lactide)/poly(D-lactide) blend fibers[J]. Polymers, 2018, 1353: 1-11.
[6] QI Y, MA H L, DU Z H, et al. Hydrophilic and antibacterial modification of poly(lactic acid) films by γ-ray irradiation[J]. ACS Omega, 2019, 4: 21439-21445.
doi: 10.1021/acsomega.9b03132
[7] XU Q, HUANG Z, JI S T, et al. Cu2O nanoparticles grafting onto PLA fibers via electron beam irradiation: bifunctional composite fibers with enhanced photocatalytic of organic pollutants in aqueous and soil systems[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323(1): 253-261.
doi: 10.1007/s10967-019-06842-w
[8] 杨博, 李琦, 李晓露, 等. 成核剂对聚左旋乳酸和聚右旋乳酸共混物结晶性能的调控[J]. 化工新型材料, 2019, 47(2): 188-192.
YANG Bo, LI Qi, LI Xiaolu, et al. Influence of nucleating agent on crystallization behavior of L-polylatic acid/D-polylatic acid[J]. New Chemical Materials, 2019, 47(2): 188-192.
[9] 秦霸, 朱砂, 吕承航, 等. 聚乳酸基抗菌材料研究现状[J]. 工程塑料应用, 2020, 40(8): 153-188.
QIN Ba, ZHU Sha, LÜ Chenghang, et al. Research status of polylactic acid based antibacterial materials[J]. Engineering Plastics Application, 2020, 40(8): 153-188.
[10] ZHANG R, LAN W J, JI T T, et al. Development of polylactic acid/ZnO composite membranes prepared by ultrasonication and electrospinning for food packaging[J]. LWT-Food Science and Technology, 2020, 135: 110072-110104.
doi: 10.1016/j.lwt.2020.110072
[11] 孙辉, 张恒源, 咸玉龙, 等. TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能[J]. 纺织学报, 2019, 40(4): 1-6.
SUN Hui, ZHANG Hengyuan, XIAN Yulong, et al. Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nano-composite fibers[J]. Journal of Textile Research, 2019, 40(4): 1-6.
doi: 10.1177/004051757004000101
[12] 程冰莹, 游少奇, 陈嘉毅, 等. 芦荟银掺杂纳米氧化锌合成及对织物的功能整理[J]. 上海纺织科技, 2020, 48(4): 54-60.
CHENG Bingying, YOU Shaoqi, CHEN Jiayi, et al. Synthesis of Ag-doped ZnO nanoparticles using Aloe Vera leaf extraction and its application in functional finishing of fabrics[J]. Shanghai Textile Science & Technology, 2020, 48(4): 54-60.
[13] 袁明伟, 曹剑飞, 鲁越, 等. 纳米ZnO-PLLA/聚乳酸复合薄膜的性能研究[J]. 塑料工业, 2018, 46(3):124-127.
YUAN Mingwei, CAO Jianfei, LU Yue, et al. Study on properties of nano-ZnO-PLLA/PLLA composite films[J]. China Plastics Industry, 2018, 46(3): 124-127.
[14] SHANKAR S, WANG L F, RHIM J W. Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films[J]. Materials Science & Engineering C:Materials for Biological Applications, 2018, 93 (1): 289-298.
[15] LI X L, ZHANG X Q, LIU G M, et al. Effect of stereocomplex crystal and flexible segments on the crystallization and tensile[J]. RSC Advances, 2018, 8(50): 28453-28460.
doi: 10.1039/C8RA05355C
[16] ALOJZ A, ANDREJ K, EMA Ž, et al. Degradation of PLA/ZnO and PHBV/ZnO composites prepared by melt processing[J]. Original Article, 2018, 3(11): 343-352.
[17] 张安莹, 王照颖, 王锐, 等. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(4): 7-13.
ZHANG Anying, WANG Zhaoying, WANG Rui, et al. Preparation and structural properties of flame retardant poly(L-lactic acid) and fiber thereof[J]. Journal of Textile Research, 2019, 40(4): 7-13.
[18] 李冲, 周晓静, 何晓红, 等. PLA/ZnO复合材料的非等温热解动力学研究[J]. 化工技术与开发, 2018, 47(7): 11-16.
LI Chong, ZHOU Xiaojing, HE Xiaohong, et al. Study on thermostability and non-isothermal thermal decomposition kinetics of PLA/ZnO composites[J]. Technology & Development of Chemical Industry, 2018, 47(7): 11-16.
[19] 商世广, 蒋建朋, 杜玉环, 等. 氧化锌纳米棒紫外探测器的制备及性能[J]. 西安邮电大学学报, 2019, 24(1): 58-62.
SHANG Shiguang, JIANG Jianpeng, DU Yuhuan, et al. Fabrication and performance of zinc oxide nanorods based photoconductive ultraviolet detectors[J]. Journal of Xi'an University of Posts and Telecommunications, 2019, 24(1): 58-62.
[20] DANIA O, JAVIER G W. Polymeric materials with antibacterial activity: a review[J]. Polymers, 2021, 13(4): 613-640.
doi: 10.3390/polym13040613
[21] RIDWAN R, RIHAYAT T, SURYANI S, et al. Combination of poly lactid acid zinc oxide nanocomposite for antimicrobial packaging application[J]. IOP Conference Series: Materials Science and Engineering, 2020, 830(4): 042018-042025.
doi: 10.1088/1757-899X/830/4/042018
[22] 戴沈华, 翁良, 李冰艳, 等. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(8): 96-101.
DAI Shenhua, WENG Liang, LI Bingyan, et al. Preparation and properties of nano ZnO loaded polyurethane/polyester foamed composite sponge[J]. Journal of Textile Research, 2021, 42(8): 96-101.
doi: 10.1177/004051757204200205
[23] 陈晓浪, 白竹煜, 吴一帆, 等. 嵌段比对左旋聚乳酸基立构复合物结晶行为及形貌的影响[J]. 功能材料, 2020, 51(12): 12142-12146.
CHEN Xiaolang, BAI Zhuyu, WU Yifan, et al. The influence of block ratio on crystallization behavior and morphology of PLLA-based stereocomplex[J]. Journal of Functional Materials, 2020, 51(12): 12142-12146.
[24] CHU Z Z, ZHAO T R, LI L, et al. Characterization of antimicrobial poly(lactic acid)/nano-composite films with silver and zinc oxide nanoparticles[J]. Materials, 2017, 10(6): 659-672.
doi: 10.3390/ma10060659
[1] LI Weiping, YANG Guixia, CHENG Zhiqiang, ZHAO Chunli. Preparation and properties of polyvinylpyrrolidone/aloe composite nanofiber membrane [J]. Journal of Textile Research, 2022, 43(08): 55-59.
[2] LIU Yanlin, GU Weiwen, WEI Jianfei, WANG Wenqing, WANG Rui. Research progress and status quo of heat-resistant polylactic acid materials [J]. Journal of Textile Research, 2022, 43(06): 180-186.
[3] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[4] OU Kangkang, QI Linya, HOU Yijun, FAN Tianhua, QI Kun, WANG Baoxiu, WANG Huaping. Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings [J]. Journal of Textile Research, 2022, 43(06): 49-56.
[5] LI Longlong, WEI Peng, WU Cuixia, YAN Jinfei, LOU Hejuan, ZHANG Yifeng, XIA Yumin, WANG Yanping, WANG Yimin. Synthesis and properties of bio-based liquid crystal copolyester fiber based on p-hydroxyphenyl propionic acid [J]. Journal of Textile Research, 2022, 43(01): 9-14.
[6] HE Ju, LIU Xiaohui, SU Xiaowei, LIN Shenggen, REN Yuanlin. Preparation and properties of viscose fibers modified with star-shaped halogen-free flame retardants [J]. Journal of Textile Research, 2021, 42(10): 34-40.
[7] LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group [J]. Journal of Textile Research, 2021, 42(07): 11-18.
[8] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
[9] GU Weiwen, WANG Wenqing, WEI Lifei, SUN Chenying, HAO Dan, WEI Jianfei, WANG Rui. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate) [J]. Journal of Textile Research, 2021, 42(07): 1-10.
[10] WANG Chunhong, LI Ming, LONG Bixuan, CAI Yingjie, WANG Lijian, ZUO Qi. Preparation and performance of polyvinyl alcohol/sodium alginate/berberine medical dressing [J]. Journal of Textile Research, 2021, 42(05): 16-22.
[11] YU Jinchao, JI Hong, CHEN Kang, GAN Yu. Properties of polyether-ester/polybutylene terephthalate composite fibers prepared by side by side bicomponent melt spinning [J]. Journal of Textile Research, 2021, 42(04): 42-47.
[12] WANG Chunhong, YANG Lu, HU Min, WANG Xiaoyun, WANG Lijian. Determination of luteolin content in carex meyeriana extract and its antibacterial properties [J]. Journal of Textile Research, 2021, 42(04): 114-120.
[13] XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43.
[14] LI Junyu, JIANG Peiqing, ZHANG Wenqi, LI Wenbin. Effect of atomic layer deposition technology on functionalization of cellulose membrane [J]. Journal of Textile Research, 2020, 41(12): 26-30.
[15] MA Yue, GUO Jing, YIN Juhui, ZHAO Miao, GONG Yumei. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers [J]. Journal of Textile Research, 2020, 41(11): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!