Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 195-202.doi: 10.13475/j.fzxb.20210608908
• Comprehensive Review • Previous Articles Next Articles
YANG Huiyu1,2, ZHOU Jingyi1, DUAN Zijian1, XU Weilin1, DENG Bo1, LIU Xin1()
CLC Number:
[1] |
DENG B, CAI R, YU Y, et al. Laundering durability of superhydrophobic cotton fabric[J]. Advanced Materials, 2010, 22(48): 5473-5477.
doi: 10.1002/adma.201002614 |
[2] |
JIANG L, LI K, YANG H, et al. Significantly improved flame-retardancy of cellulose acetate nanofiber by Mg-based nano flaky petal[J]. Cellulose, 2019, 26 (9): 5211-5226.
doi: 10.1007/s10570-019-02451-8 |
[3] |
ZHAO J, DENG B, LV M, et al. Graphene oxide-based antibacterial cotton fabrics[J]. Advanced Healthcare Materials, 2013, 2(9): 1259-1266.
doi: 10.1002/adhm.201200437 |
[4] | LIU H, LV M, DENG B, et al. Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations[J]. Scientific Reports, 2014, 4(1): 1-9. |
[5] | CHENG Q Y, ZHAO X L, WENG Y X, et al. Fully sustainable, nanoparticle-free, fluorine-free, and robust superhydrophobic cotton fabric fabricated via an eco-friendly method for efficient oil/water separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15696-15705. |
[6] |
CHENG Q Y, GUAN C S, LI Y D, et al. Robust and durable superhydrophobic cotton fabrics via a one-step solvothermal method for efficient oil/water separation[J]. Cellulose, 2019, 26(4): 2861-2872.
doi: 10.1007/s10570-019-02267-6 |
[7] |
EMAM H E, BECHTOLD T. Cotton fabrics with UV blocking properties through metal salts deposition[J]. Applied Surface Science, 2015, 357: 1878-1889.
doi: 10.1016/j.apsusc.2015.09.095 |
[8] |
ROMAN L E, HUACHANI J, URIBE C, et al. Blocking erythemally weighted UV radiation using cotton fabrics functionalized with ZnO nanoparticles in situ[J]. Applied Surface Science, 2019, 469: 204-212.
doi: 10.1016/j.apsusc.2018.11.047 |
[9] |
SOBCZYK-GUZENDA A, SZYMANOWSKI H, JAKUBOWSKI W, et al. Morphology, photocleaning and water wetting properties of cotton fabrics, modified with titanium dioxide coatings synthesized with plasma enhanced chemical vapor deposition technique[J]. Surface & Coatings Technology, 2013, 217: 51-57.
doi: 10.1016/j.surfcoat.2012.11.071 |
[10] |
WANG W, GUO J, LIU X, et al. Constructing eco-friendly flame retardant coating on cotton fabrics by layer-by-layer self-assembly[J]. Cellulose, 2020, 27(4): 5377-5389.
doi: 10.1007/s10570-020-03140-7 |
[11] |
ZHAO H, TIAN M, HAO Y, et al. Fast and facile graphene oxide grafting on hydrophobic polyamide fabric via electrophoretic deposition route[J]. Journal of Materials Science, 2018, 53 (13): 9504-9520.
doi: 10.1007/s10853-018-2230-7 |
[12] |
KARTTUNEN A J, SARNES L, TOWNSEND R, et al. Flexible thermoelectric ZnO-organic superlattices on cotton textile substrates by ALD/MLD[J]. Advanced Electronic Materials, 2017, 3(6): 1600459-1600466.
doi: 10.1002/aelm.201600459 |
[13] |
LI C, REN L, LIU X, et al. Superhydrophilic and underwater superoleophobic poly(propylene) nonwoven coated with TiO2 by atomic layer deposition[J]. Advanced Materials Interfaces, 2021, 8(1): 2001485-2001495.
doi: 10.1002/admi.202001485 |
[14] |
MIDANI L, BEN-YAHIA W, SALLES V, et al. Nanofabrication via maskless localized atomic layer deposition of patterned nanoscale metal oxide films[J]. ACS Applied Nano Materials, 2021, 4(11): 11980-11988.
doi: 10.1021/acsanm.1c02550 |
[15] |
KAUSHIK M, LEROY C, CHEN Z, et al. Atomic-scale structure and its impact on chemical properties of aluminum oxide layers prepared by atomic layer deposition on silica[J]. Chemistry of Materials, 2021, 33(9): 3335-3348.
doi: 10.1021/acs.chemmater.1c00516 |
[16] | 李爱东. 原子层沉积技术:原理及其应用[M]. 北京: 科学出版社, 2016: 18-48. |
LI Aidong. Atomic layer deposition technology:principle and application[M]. Beijing: Science Press, 2016: 18-48. | |
[17] |
HYDE G K, SCAREL G, SPAGNOLA J C, et al. Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics[J]. Langmuir, 2009, 26(4):2550-2558.
doi: 10.1021/la902830d |
[18] |
HYDE G K, PARK K J, STEWART S M, et al. Atomic layer deposition of conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: effect of surface topology on film growth characteristics[J]. Langmuir, 2007, 23(19):9844-9849.
doi: 10.1021/la701449t |
[19] |
ROTH K M, ROBERTS K G, HYDE G K. Effect of weave geometry on surface energy modification of textile materials via atomic layer deposition[J]. Textile Research Journal, 2010, 80(18): 1970-1981.
doi: 10.1177/0040517510371868 |
[20] |
LEE K, JUR J S, KIM D H, et al. Mechanisms for hydrophilic/hydrophobic wetting transitions on cellulose cotton fibers coated using Al2O3 atomic layer deposition[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2012. DOI: 10.1116/1.3671942.
doi: 10.1116/1.3671942 |
[21] |
XIAO X, CAO G, CHEN F, et al. Durable superhydrophobic wool fabrics coating with nanoscale Al2O3 layer by atomic layer deposition[J]. Applied Surface Science, 2015, 349: 876-879.
doi: 10.1016/j.apsusc.2015.05.061 |
[22] |
CHEN F, LIU X, YANNG H, et al. A simple one-step approach to fabrication of highly hydrophobic silk fabrics[J]. Applied Surface Science, 2016, 360: 207-212.
doi: 10.1016/j.apsusc.2015.10.186 |
[23] | CHEN F, YANG H, LIU X, et al. Facile fabrication of multifunctional hybrid silk fabrics with controllable surface wettability and laundering durability[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5653-5660. |
[24] |
XIONG S, KONG L, HUANG J, et al. Atomic-layer-deposition-enabled nonwoven membranes with hierarchical ZnO nanostructures for switchable water/oil separations[J]. Journal of Membrane Science, 2015, 493:478-485.
doi: 10.1016/j.memsci.2015.06.054 |
[25] | XIAO X, LIU X, CHEN F, et al. Highly anti-UV properties of silk fiber with uniform and conformal nanoscale TiO2 coatings via atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21326-21333. |
[26] |
LIANG Z, ZHOU Z, LI J, et al. Multi-functional silk fibers/fabrics with a negligible impact on comfortable and wearability properties for bulk fiber[J]. Chemical Engineering Journal, 2021, 415: 128980-128989.
doi: 10.1016/j.cej.2021.128980 |
[27] |
CHEN F X, YANG Y, LI K, et al. Exceptional wearability of multifunctional TiO2-coated hybrid silk fabric with controllable ultraviolet-protection proper-ties[J]. Textile Research Journal, 2018, 88(24): 2757-2765.
doi: 10.1177/0040517517729390 |
[28] | XIAO X, XIN L, CAO G, et al. Atomic layer deposition TiO2/Al2O3 nanolayer of dyed polyamide/aramid blend fabric for high intensity UV light protection[J]. Polymer Engineering & Science, 2015, 55(6): 1296-1302. |
[29] | YANG H, YU Z, LI K, et al. Facile and effective fabrication of highly UV-resistant silk fabrics with excellent laundering durability and thermal and chemical stabilities[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27426-27434. |
[30] |
LI L, XU W, WU X, et al. Fabrication and characterization of infrared-insulating cotton fabrics by ALD[J]. Cellulose, 2017, 24(9): 3981-3990.
doi: 10.1007/s10570-017-1380-0 |
[31] | LI W, LI L, XI W, et al. High infrared blocking cellulose film based on amorphous to anatase transition of TiO2 via atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2018, 10(25): 21056-21060. |
[32] |
POPESCU M C, UNGUREANU C, BUSE E, et al. Antibacterial efficiency of cellulose-based fibers covered with ZnO and Al2O3 by atomic layer deposition[J]. Applied Surface Science, 2019, 481: 1287-1298.
doi: 10.1016/j.apsusc.2019.03.268 |
[33] |
WANG Z, LI Z, LIU Z, et al. The antibacterial polyamide 6-ZnO hierarchical nanofibers fabricated by atomic layer deposition and hydrothermal growth[J]. Nanoscale Research Letters, 2017, 12(1): 1-8.
doi: 10.1186/s11671-016-1773-2 |
[34] |
FENG S, LI D, LOW Z X, et al. ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter[J]. Journal of Membrane Science, 2017, 531: 86-93.
doi: 10.1016/j.memsci.2017.02.042 |
[35] | 黎俊妤, 蒋培清, 张文奇, 等. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30,36. |
LI Junyu, JIANG Peiqing, ZHANG Wenqi, et al. Effect of atomic layer deposition technology on functionalization of cellulose membranes[J]. Journal of Textile Research, 2020, 41(12): 26-30,36. | |
[36] |
LEE S M, PIPPEL E, GÖSELE U, et al. Greatly increased toughness of infiltrated spider silk[J]. Science, 2009, 324(5926): 488-492.
doi: 10.1126/science.1168162 |
[37] |
GREGORCZYK K E, PICKUP D F, SANZ M G, et al. Tuning the tensile strength of cellulose through vapor-phase metalation[J]. Chemistry of Materials, 2015, 27(1): 181-188.
doi: 10.1021/cm503724c |
[38] |
SHIMEL M, GOUZMAN I, GROSSMAN E, et al. Enhancement of wetting and mechanical properties of UHMWPE-based composites through alumina atomic layer deposition[J]. Advanced Materials Interfaces, 2018, 5(14): 1800295-1800304.
doi: 10.1002/admi.201800295 |
[39] |
JIA X, LOW Z, CHEN H, et al. Atomic layer deposition of Al2O3 on porous polypropylene hollow fibers for enhanced membrane performances[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 695-700.
doi: 10.1016/j.cjche.2017.10.008 |
[40] |
PENG Q, TSENG Y C, DARLING S B, et al. Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers[J]. Advanced Materials, 2010, 22 (45): 5129-5133.
doi: 10.1002/adma.201002465 |
[41] |
PENG Q, TSENG Y C, DARLING S B, et al. A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates[J]. ACS Nano, 2011, 5(6):4600-4606.
doi: 10.1021/nn2003234 |
[42] |
BO G, PARSONS G N. Quantitative in situ infrared analysis of reactions between trimethylaluminum and polymers during Al2O3 atomic layer deposition[J]. Journal of Materials Chemistry, 2012, 22(31): 15672-15682.
doi: 10.1039/c2jm32343e |
[43] |
PARSONS G N, ATANASOV S E, DANDLEY E C, et al. Mechanisms and reactions during atomic layer deposition on polymers[J]. Coordination Chemistry Reviews, 2013, 257(23/24): 3323-3331.
doi: 10.1016/j.ccr.2013.07.001 |
[44] |
JUR J S, SPAGNOLA J C, LEE K, et al. Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers[J]. Langmuir, 2010, 26(11): 8239-8244.
doi: 10.1021/la904604z |
[45] |
YANG H, LI K, LIU W, et al. Development of structural colored cotton fabric via the layer-by-layer electrostatic self-assembling of SiO2 nanoparticles[J]. Cellulose, 2020, 27(7): 4133-4144.
doi: 10.1007/s10570-020-03040-w |
[46] | YANG H, ZHOU J, DUAN Z, et al. Preparation of structural color on cotton fabric with high color fastness through multiple hydrogen bonds between polyphenol hydroxyl and lactam[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3244-3254. |
[47] | HORI T, ZOLLINGER H. The role of water in the dyeing process[J]. Textile Chemist & Colorist, 1986, 18(10):19-25. |
[48] | 孙瑞哲, 王曾敬. 依靠技术进步解决印染行业水污染问题[J]. 环境保护, 2007(19): 33-35. |
SUN Ruizhe, WANG Zengjing. Relying on technological progress to solve the problem of water pollution in printing and dyeing industry[J]. Environmental Protection, 2007(19): 33-35. | |
[49] |
CHEN F, YANG H, LI K, et al. Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability[J]. ACS Nano, 2017, 11(10): 10330-10336.
doi: 10.1021/acsnano.7b05139 |
[50] | NIU W, ZHANG L, WANG Y, et al. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management[J]. ACS Applied Materials & Interfaces, 2019, 11 (35): 32261-32268. |
[1] | CHEN Junxian, LI Weiping, FU Qixuan, FENG Xinxing, ZHANG Hua. Preparation and properties of aramid/flame retardant viscose/flame retardant polyamide blended fabrics [J]. Journal of Textile Research, 2022, 43(09): 107-114. |
[2] | XU Mingtao, JI Yu, ZHONG Yue, ZHANG Yan, WANG Ping, SUI Jianhua, LI Yuanyuan. Review on toughening modification of carbon fiber/epoxy resin composites [J]. Journal of Textile Research, 2022, 43(09): 203-210. |
[3] | XIONG Tanping, TAN Fei, HUANG Cheng, YAN Kelu, ZOU Ni, WANG Zheng, YE Jingping, JI Bolin. Antimicrobial properties of chloramine-grafted polyester/polyamide microfiber knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 101-106. |
[4] | ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96. |
[5] | NAN Qingqing, ZENG Qinghong, YUAN Jingxuan, WANG Xiaoqin, ZHENG Zhaozhu, LI Gang. Advances on antibacterial textiles [J]. Journal of Textile Research, 2022, 43(06): 197-205. |
[6] | WANG Yanping, CHEN Xiaoqian, XIA Wei, FU Jiajia, GAO Weidong, WANG Hongbo, ARTUR Cavaco-Paulo. Application of cutinase in polyester surface modification [J]. Journal of Textile Research, 2022, 43(05): 136-142. |
[7] | QIAO Yansha, MAO Ying, XU Danyao, LI Yan, LI Shaojie, WANG Lu, TANG Jianxiong. Research progress in warp-knitted meshes for tackling complications after hernia repair [J]. Journal of Textile Research, 2022, 43(03): 1-7. |
[8] | JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121. |
[9] | WANG Zhihui, XU Yufei, GUO Haoyu, ZHANG Kanglei, PANG Xingchen, NIE Xiaolin, ZHUGE Jian, WEI Qufu. Progress in application of photodynamic antibacterial technology for textiles [J]. Journal of Textile Research, 2021, 42(11): 187-196. |
[10] | CHEN Xiangxiang, WU Ting, ZHOU Weitao, SUN Yangyang, DU Shan, ZHANG Xiaoli. Grafting modification of polyamide 6 fabric with methyl methacrylate initiated by hydrogen peroxide/ascorbic acid and its properties [J]. Journal of Textile Research, 2021, 42(09): 131-136. |
[11] | ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56. |
[12] | ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45. |
[13] | ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38. |
[14] | LUO Xiaolei, LI Ziyan, MA Ya'nan, LIU Lin, KRUCINSKA Izabella, YAO Juming. Progress in ecological flame retardant technology for textiles [J]. Journal of Textile Research, 2021, 42(05): 193-202. |
[15] | ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109. |
|