Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 195-202.doi: 10.13475/j.fzxb.20210608908

• Comprehensive Review • Previous Articles     Next Articles

Research progress in textile surface multifunctional modification by atomic layer deposition

YANG Huiyu1,2, ZHOU Jingyi1, DUAN Zijian1, XU Weilin1, DENG Bo1, LIU Xin1()   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
  • Received:2021-06-30 Revised:2022-06-02 Online:2022-09-15 Published:2022-09-26
  • Contact: LIU Xin E-mail:xinliu_wtu@163.com

Abstract:

In order to tackle the nano-particle agglomeration, poor film stability, and reduced fiber mechanical strength and flexibility when preparing multifunctional textiles from inorganic nano-films, one route is to treat the textile surface using inorganic nano-films with ultra-thin, high interfacial bonding fastness, and high-stability. This review summarizes the reaction mechanism of atomic layer deposition (ALD) and the unique advantages of preparing inorganic nano-films. The current global research progress in inorganic nano-films deposited by ALD to impart functional properties such as ultraviolet resistance, thermal insulation, antibacterial and structural color on the surface of textiles were reviewed. The advantages and disadvantages of ALD and chemical vapor deposition are compared and analyzed. The challenges and problems of ALD in the application of textile functionalization were summarized. It was pointed out that the preparation of inorganic nano-films by ALD represents an important development direction of multifunctional textiles.

Key words: atomic layer deposition, functional textiles, inorganic nano-film, surface modification, chemical vapor deposition

CLC Number: 

  • TS101

Fig.1

Chemical reaction mechanism of Al2O3 on fabrics by ALD"

Tab.1

Features, advantages and limitations of atomic layer deposition process"

工艺特点 优势 局限性
自限制表面生长 精确简单的膜厚控制;优异的三维共形性和大面积均匀性;致密无针孔薄膜;较低的生长温度 低生长速率;薄膜具有较低的结晶度或无定形态;多余前驱体的处理和污染环境
交替脉冲输入反应物 避免气相反应,可使用高活性前驱体;单原子层调控;适合界面修饰和多层重叠结构生长 前驱体的种类少、杂质残余
ALD 窗口设计 多种薄膜层制备、掺杂、循环调控 三元和复杂氧化物设计缺乏

Tab.2

Comparison of characteristics of atomic layer deposition and chemical vapor deposition"

影响因素 原子层沉积 化学气相沉积
前驱体 高反应活性;可在基材上交替反应;可接受过量前驱体;反应温度下不可分解 反应活性低;基材表面同时反应;前驱体的用量需控制;沉积温度下可分解
均匀性 由表面化学吸附、自限制反应机制生长决定 由反应室、气流和温度等工艺参数决定
反应速率 较低(纳米级生长) 高(微米级生长)
厚度 取决于反应循环次数 调控工艺参数
[1] DENG B, CAI R, YU Y, et al. Laundering durability of superhydrophobic cotton fabric[J]. Advanced Materials, 2010, 22(48): 5473-5477.
doi: 10.1002/adma.201002614
[2] JIANG L, LI K, YANG H, et al. Significantly improved flame-retardancy of cellulose acetate nanofiber by Mg-based nano flaky petal[J]. Cellulose, 2019, 26 (9): 5211-5226.
doi: 10.1007/s10570-019-02451-8
[3] ZHAO J, DENG B, LV M, et al. Graphene oxide-based antibacterial cotton fabrics[J]. Advanced Healthcare Materials, 2013, 2(9): 1259-1266.
doi: 10.1002/adhm.201200437
[4] LIU H, LV M, DENG B, et al. Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations[J]. Scientific Reports, 2014, 4(1): 1-9.
[5] CHENG Q Y, ZHAO X L, WENG Y X, et al. Fully sustainable, nanoparticle-free, fluorine-free, and robust superhydrophobic cotton fabric fabricated via an eco-friendly method for efficient oil/water separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15696-15705.
[6] CHENG Q Y, GUAN C S, LI Y D, et al. Robust and durable superhydrophobic cotton fabrics via a one-step solvothermal method for efficient oil/water separation[J]. Cellulose, 2019, 26(4): 2861-2872.
doi: 10.1007/s10570-019-02267-6
[7] EMAM H E, BECHTOLD T. Cotton fabrics with UV blocking properties through metal salts deposition[J]. Applied Surface Science, 2015, 357: 1878-1889.
doi: 10.1016/j.apsusc.2015.09.095
[8] ROMAN L E, HUACHANI J, URIBE C, et al. Blocking erythemally weighted UV radiation using cotton fabrics functionalized with ZnO nanoparticles in situ[J]. Applied Surface Science, 2019, 469: 204-212.
doi: 10.1016/j.apsusc.2018.11.047
[9] SOBCZYK-GUZENDA A, SZYMANOWSKI H, JAKUBOWSKI W, et al. Morphology, photocleaning and water wetting properties of cotton fabrics, modified with titanium dioxide coatings synthesized with plasma enhanced chemical vapor deposition technique[J]. Surface & Coatings Technology, 2013, 217: 51-57.
doi: 10.1016/j.surfcoat.2012.11.071
[10] WANG W, GUO J, LIU X, et al. Constructing eco-friendly flame retardant coating on cotton fabrics by layer-by-layer self-assembly[J]. Cellulose, 2020, 27(4): 5377-5389.
doi: 10.1007/s10570-020-03140-7
[11] ZHAO H, TIAN M, HAO Y, et al. Fast and facile graphene oxide grafting on hydrophobic polyamide fabric via electrophoretic deposition route[J]. Journal of Materials Science, 2018, 53 (13): 9504-9520.
doi: 10.1007/s10853-018-2230-7
[12] KARTTUNEN A J, SARNES L, TOWNSEND R, et al. Flexible thermoelectric ZnO-organic superlattices on cotton textile substrates by ALD/MLD[J]. Advanced Electronic Materials, 2017, 3(6): 1600459-1600466.
doi: 10.1002/aelm.201600459
[13] LI C, REN L, LIU X, et al. Superhydrophilic and underwater superoleophobic poly(propylene) nonwoven coated with TiO2 by atomic layer deposition[J]. Advanced Materials Interfaces, 2021, 8(1): 2001485-2001495.
doi: 10.1002/admi.202001485
[14] MIDANI L, BEN-YAHIA W, SALLES V, et al. Nanofabrication via maskless localized atomic layer deposition of patterned nanoscale metal oxide films[J]. ACS Applied Nano Materials, 2021, 4(11): 11980-11988.
doi: 10.1021/acsanm.1c02550
[15] KAUSHIK M, LEROY C, CHEN Z, et al. Atomic-scale structure and its impact on chemical properties of aluminum oxide layers prepared by atomic layer deposition on silica[J]. Chemistry of Materials, 2021, 33(9): 3335-3348.
doi: 10.1021/acs.chemmater.1c00516
[16] 李爱东. 原子层沉积技术:原理及其应用[M]. 北京: 科学出版社, 2016: 18-48.
LI Aidong. Atomic layer deposition technology:principle and application[M]. Beijing: Science Press, 2016: 18-48.
[17] HYDE G K, SCAREL G, SPAGNOLA J C, et al. Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics[J]. Langmuir, 2009, 26(4):2550-2558.
doi: 10.1021/la902830d
[18] HYDE G K, PARK K J, STEWART S M, et al. Atomic layer deposition of conformal inorganic nanoscale coatings on three-dimensional natural fiber systems: effect of surface topology on film growth characteristics[J]. Langmuir, 2007, 23(19):9844-9849.
doi: 10.1021/la701449t
[19] ROTH K M, ROBERTS K G, HYDE G K. Effect of weave geometry on surface energy modification of textile materials via atomic layer deposition[J]. Textile Research Journal, 2010, 80(18): 1970-1981.
doi: 10.1177/0040517510371868
[20] LEE K, JUR J S, KIM D H, et al. Mechanisms for hydrophilic/hydrophobic wetting transitions on cellulose cotton fibers coated using Al2O3 atomic layer deposition[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2012. DOI: 10.1116/1.3671942.
doi: 10.1116/1.3671942
[21] XIAO X, CAO G, CHEN F, et al. Durable superhydrophobic wool fabrics coating with nanoscale Al2O3 layer by atomic layer deposition[J]. Applied Surface Science, 2015, 349: 876-879.
doi: 10.1016/j.apsusc.2015.05.061
[22] CHEN F, LIU X, YANNG H, et al. A simple one-step approach to fabrication of highly hydrophobic silk fabrics[J]. Applied Surface Science, 2016, 360: 207-212.
doi: 10.1016/j.apsusc.2015.10.186
[23] CHEN F, YANG H, LIU X, et al. Facile fabrication of multifunctional hybrid silk fabrics with controllable surface wettability and laundering durability[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5653-5660.
[24] XIONG S, KONG L, HUANG J, et al. Atomic-layer-deposition-enabled nonwoven membranes with hierarchical ZnO nanostructures for switchable water/oil separations[J]. Journal of Membrane Science, 2015, 493:478-485.
doi: 10.1016/j.memsci.2015.06.054
[25] XIAO X, LIU X, CHEN F, et al. Highly anti-UV properties of silk fiber with uniform and conformal nanoscale TiO2 coatings via atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21326-21333.
[26] LIANG Z, ZHOU Z, LI J, et al. Multi-functional silk fibers/fabrics with a negligible impact on comfortable and wearability properties for bulk fiber[J]. Chemical Engineering Journal, 2021, 415: 128980-128989.
doi: 10.1016/j.cej.2021.128980
[27] CHEN F X, YANG Y, LI K, et al. Exceptional wearability of multifunctional TiO2-coated hybrid silk fabric with controllable ultraviolet-protection proper-ties[J]. Textile Research Journal, 2018, 88(24): 2757-2765.
doi: 10.1177/0040517517729390
[28] XIAO X, XIN L, CAO G, et al. Atomic layer deposition TiO2/Al2O3 nanolayer of dyed polyamide/aramid blend fabric for high intensity UV light protection[J]. Polymer Engineering & Science, 2015, 55(6): 1296-1302.
[29] YANG H, YU Z, LI K, et al. Facile and effective fabrication of highly UV-resistant silk fabrics with excellent laundering durability and thermal and chemical stabilities[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27426-27434.
[30] LI L, XU W, WU X, et al. Fabrication and characterization of infrared-insulating cotton fabrics by ALD[J]. Cellulose, 2017, 24(9): 3981-3990.
doi: 10.1007/s10570-017-1380-0
[31] LI W, LI L, XI W, et al. High infrared blocking cellulose film based on amorphous to anatase transition of TiO2 via atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2018, 10(25): 21056-21060.
[32] POPESCU M C, UNGUREANU C, BUSE E, et al. Antibacterial efficiency of cellulose-based fibers covered with ZnO and Al2O3 by atomic layer deposition[J]. Applied Surface Science, 2019, 481: 1287-1298.
doi: 10.1016/j.apsusc.2019.03.268
[33] WANG Z, LI Z, LIU Z, et al. The antibacterial polyamide 6-ZnO hierarchical nanofibers fabricated by atomic layer deposition and hydrothermal growth[J]. Nanoscale Research Letters, 2017, 12(1): 1-8.
doi: 10.1186/s11671-016-1773-2
[34] FENG S, LI D, LOW Z X, et al. ALD-seeded hydrothermally-grown Ag/ZnO nanorod PTFE membrane as efficient indoor air filter[J]. Journal of Membrane Science, 2017, 531: 86-93.
doi: 10.1016/j.memsci.2017.02.042
[35] 黎俊妤, 蒋培清, 张文奇, 等. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30,36.
LI Junyu, JIANG Peiqing, ZHANG Wenqi, et al. Effect of atomic layer deposition technology on functionalization of cellulose membranes[J]. Journal of Textile Research, 2020, 41(12): 26-30,36.
[36] LEE S M, PIPPEL E, GÖSELE U, et al. Greatly increased toughness of infiltrated spider silk[J]. Science, 2009, 324(5926): 488-492.
doi: 10.1126/science.1168162
[37] GREGORCZYK K E, PICKUP D F, SANZ M G, et al. Tuning the tensile strength of cellulose through vapor-phase metalation[J]. Chemistry of Materials, 2015, 27(1): 181-188.
doi: 10.1021/cm503724c
[38] SHIMEL M, GOUZMAN I, GROSSMAN E, et al. Enhancement of wetting and mechanical properties of UHMWPE-based composites through alumina atomic layer deposition[J]. Advanced Materials Interfaces, 2018, 5(14): 1800295-1800304.
doi: 10.1002/admi.201800295
[39] JIA X, LOW Z, CHEN H, et al. Atomic layer deposition of Al2O3 on porous polypropylene hollow fibers for enhanced membrane performances[J]. Chinese Journal of Chemical Engineering, 2018, 26(4): 695-700.
doi: 10.1016/j.cjche.2017.10.008
[40] PENG Q, TSENG Y C, DARLING S B, et al. Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers[J]. Advanced Materials, 2010, 22 (45): 5129-5133.
doi: 10.1002/adma.201002465
[41] PENG Q, TSENG Y C, DARLING S B, et al. A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates[J]. ACS Nano, 2011, 5(6):4600-4606.
doi: 10.1021/nn2003234
[42] BO G, PARSONS G N. Quantitative in situ infrared analysis of reactions between trimethylaluminum and polymers during Al2O3 atomic layer deposition[J]. Journal of Materials Chemistry, 2012, 22(31): 15672-15682.
doi: 10.1039/c2jm32343e
[43] PARSONS G N, ATANASOV S E, DANDLEY E C, et al. Mechanisms and reactions during atomic layer deposition on polymers[J]. Coordination Chemistry Reviews, 2013, 257(23/24): 3323-3331.
doi: 10.1016/j.ccr.2013.07.001
[44] JUR J S, SPAGNOLA J C, LEE K, et al. Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers[J]. Langmuir, 2010, 26(11): 8239-8244.
doi: 10.1021/la904604z
[45] YANG H, LI K, LIU W, et al. Development of structural colored cotton fabric via the layer-by-layer electrostatic self-assembling of SiO2 nanoparticles[J]. Cellulose, 2020, 27(7): 4133-4144.
doi: 10.1007/s10570-020-03040-w
[46] YANG H, ZHOU J, DUAN Z, et al. Preparation of structural color on cotton fabric with high color fastness through multiple hydrogen bonds between polyphenol hydroxyl and lactam[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3244-3254.
[47] HORI T, ZOLLINGER H. The role of water in the dyeing process[J]. Textile Chemist & Colorist, 1986, 18(10):19-25.
[48] 孙瑞哲, 王曾敬. 依靠技术进步解决印染行业水污染问题[J]. 环境保护, 2007(19): 33-35.
SUN Ruizhe, WANG Zengjing. Relying on technological progress to solve the problem of water pollution in printing and dyeing industry[J]. Environmental Protection, 2007(19): 33-35.
[49] CHEN F, YANG H, LI K, et al. Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability[J]. ACS Nano, 2017, 11(10): 10330-10336.
doi: 10.1021/acsnano.7b05139
[50] NIU W, ZHANG L, WANG Y, et al. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management[J]. ACS Applied Materials & Interfaces, 2019, 11 (35): 32261-32268.
[1] CHEN Junxian, LI Weiping, FU Qixuan, FENG Xinxing, ZHANG Hua. Preparation and properties of aramid/flame retardant viscose/flame retardant polyamide blended fabrics [J]. Journal of Textile Research, 2022, 43(09): 107-114.
[2] XU Mingtao, JI Yu, ZHONG Yue, ZHANG Yan, WANG Ping, SUI Jianhua, LI Yuanyuan. Review on toughening modification of carbon fiber/epoxy resin composites [J]. Journal of Textile Research, 2022, 43(09): 203-210.
[3] XIONG Tanping, TAN Fei, HUANG Cheng, YAN Kelu, ZOU Ni, WANG Zheng, YE Jingping, JI Bolin. Antimicrobial properties of chloramine-grafted polyester/polyamide microfiber knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 101-106.
[4] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[5] NAN Qingqing, ZENG Qinghong, YUAN Jingxuan, WANG Xiaoqin, ZHENG Zhaozhu, LI Gang. Advances on antibacterial textiles [J]. Journal of Textile Research, 2022, 43(06): 197-205.
[6] WANG Yanping, CHEN Xiaoqian, XIA Wei, FU Jiajia, GAO Weidong, WANG Hongbo, ARTUR Cavaco-Paulo. Application of cutinase in polyester surface modification [J]. Journal of Textile Research, 2022, 43(05): 136-142.
[7] QIAO Yansha, MAO Ying, XU Danyao, LI Yan, LI Shaojie, WANG Lu, TANG Jianxiong. Research progress in warp-knitted meshes for tackling complications after hernia repair [J]. Journal of Textile Research, 2022, 43(03): 1-7.
[8] JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121.
[9] WANG Zhihui, XU Yufei, GUO Haoyu, ZHANG Kanglei, PANG Xingchen, NIE Xiaolin, ZHUGE Jian, WEI Qufu. Progress in application of photodynamic antibacterial technology for textiles [J]. Journal of Textile Research, 2021, 42(11): 187-196.
[10] CHEN Xiangxiang, WU Ting, ZHOU Weitao, SUN Yangyang, DU Shan, ZHANG Xiaoli. Grafting modification of polyamide 6 fabric with methyl methacrylate initiated by hydrogen peroxide/ascorbic acid and its properties [J]. Journal of Textile Research, 2021, 42(09): 131-136.
[11] ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56.
[12] ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45.
[13] ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38.
[14] LUO Xiaolei, LI Ziyan, MA Ya'nan, LIU Lin, KRUCINSKA Izabella, YAO Juming. Progress in ecological flame retardant technology for textiles [J]. Journal of Textile Research, 2021, 42(05): 193-202.
[15] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!