Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (03): 201-209.doi: 10.13475/j.fzxb.20210700509
• Comprehensive Review • Previous Articles Next Articles
HE Mantang1, WANG Liming1(), QIN Xiaohong1, YU Jianyong2
CLC Number:
[1] | 杨宇笛, 徐壁, 蔡再生. 基于染色斜纹棉布的太阳能驱动界面水蒸发体系的研究[J]. 产业用纺织品, 2020, 38 (3): 29-35. |
YANG Yudi, XU Bi, CAI Zaisheng. Study on solar driven interfacial water evaporation system based on dyed twill cotton fabric[J]. Technical Textiles, 2020, 38 (3): 29-35. | |
[2] |
YAO H, ZHANG P, HUANG Y, et al. Highly efficient clean water production from contaminated air with a wide humidity range[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201905875.
doi: 10.1002/adma.201905875 |
[3] | 常宇虹. 纳米过渡金属氧族化合物的太阳能光热蒸汽转化研究[D]. 济南: 山东大学, 2019: 1-94. |
CHANG Yuhong. Study on solar photothermal steam con version of nanosized transition metal oxides[D]. Ji'nan: Shandong University, 2019: 1-94. | |
[4] | 高婷婷. 碳基复合材料的制备及其能源存储与光热转化性能的研究[D]. 上海: 东华大学, 2019: 5-6. |
GAO Tingting. Preparation of carbon matrix composites and their energy storage and photothermal conversion properties[D]. Shanghai: Donghua University, 2019: 5-6. | |
[5] |
WEI Z, CAI C, HUANG Y, et al. Biomimetic surface strategy of spectrum-tailored liquid metal via blackbody inspiration for highly efficient solar steam generation, desalination, and electricity generation[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106138.
doi: 10.1016/j.nanoen.2021.106138 |
[6] | 葛灿, 张传雄, 方剑. 界面光热转换水蒸发系统用纤维材料的研究进展[J]. 纺织学报, 2021, 42(12): 166-173. |
GE Can, ZHANG Chuanxiong, FANG Jian. Research progress in fibrous materials for interfacial solar steam generation system[J]. Journal of Textile Research, 2021, 42 (12): 166-173. | |
[7] |
LIU X, TIAN Y, CHEN F, et al. An easy-to-fabricate 2.5D evaporator for efficient solar desalination[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202100911.
doi: 10.1002/adfm.202100911 |
[8] |
XU X, OZDEN S, BIZMARK N, et al. A bioinspired elastic hydrogel for solar-driven water purification[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202007833.
doi: 10.1002/adma.202007833 |
[9] |
CHEN C, LI Y, SONG J, et al. Highly flexible and efficient solar steam generation device[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201701756.
doi: 10.1002/adma.201701756 |
[10] |
LEE J, KIM K, PARK S H, et al. Macroporous photothermal bilayer evaporator for highly efficient and self-cleaning solar desalination[J]. Nano Energy, 2020.DOI: 10.1016/j.nanoen.2020.105130.
doi: 10.1016/j.nanoen.2020.105130 |
[11] | 陈亚丽, 赵国猛, 任李培, 等. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(8): 115-121. |
CHEN Yali, ZHAO Guomeng, REN Lipei, et al. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials[J]. Journal of Textile Research, 2021, 42(8): 115-121. | |
[12] |
HE M, DAI H, LIU H, et al. High-performance solar steam generator based on polypyrrole-coated fabric via 3D macro-and microstructure design[J]. ACS Appl Mater Interfaces, 2021, 13(34): 40664-40672.
doi: 10.1021/acsami.1c11802 |
[13] |
HE M, ALAM M K, LIU H, et al. Textile waste derived cellulose based composite aerogel for efficient solar steam generation[J]. Composites Communications, 2021. DOI: 10.1016/j.coco.2021.100936.
doi: 10.1016/j.coco.2021.100936 |
[14] |
LIU Y, LIU H, XIONG J, et al. Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.131539.
doi: 10.1016/j.cej.2021.131539 |
[15] |
LIU H, ALAM M K, HE M, et al. Sustainable cellulose aerogel from waste cotton fabric for high-performance solar steam generation[J]. ACS Appl Mater Interfaces, 2021, 13(42): 49860-49867.
doi: 10.1021/acsami.1c13362 |
[16] |
GUO X, GAO H, WANG S, et al. Scalable, flexible and reusable graphene oxide-functionalized electrospun nanofibrous membrane for solar photothermal desalination[J]. Desalination, 2020. DOI: 10.1016/j.desal.2020.114535.
doi: 10.1016/j.desal.2020.114535 |
[17] | CHALA T F, WU C M, CHOU M H, et al. Melt electrospun reduced tungsten oxide /polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28955-28962. |
[18] |
LIU Y, XIONG J, LI A, et al. Plasmonic silver nanoparticle-decorated electrospun nanofiber membrane for interfacial solar vapor generation[J]. Textile Research Journal, 2021. DOI: 10.1177/00405175211014966.
doi: 10.1177/00405175211014966 |
[19] |
WU X, WU Z, WANG Y, et al. All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator[J]. Advanced Science, 2021. DOI: 10.1002/advs.202002501.
doi: 10.1002/advs.202002501 |
[20] |
LEI W, KHAN S, CHEN L, et al. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evapora-tion[J]. Nano Research, 2020, 14(4): 1135-1140.
doi: 10.1007/s12274-020-3162-5 |
[21] |
LI L, ZANG L, ZHANG S, et al. GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111: 191-197.
doi: 10.1016/j.jtice.2020.03.015 |
[22] |
ZHOU Q, LI H, LI D, et al. A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation[J]. J Colloid Interface Science, 2021, 592: 77-86.
doi: 10.1016/j.jcis.2021.02.045 |
[23] |
WU D, LIANG J, ZHANG D, et al. Solar evaporation and electricity generation of porous carbonaceous membrane prepared by electrospinning and carboni-zation[J]. Solar Energy Materials and Solar Cells, 2020. DOI: 10.1016/j.solmat.2020.110591.
doi: 10.1016/j.solmat.2020.110591 |
[24] |
IRSHAD M S, ARSHAD N, WANG X. Nanoenabled photothermal materials for clean water production[J]. Global Challenges, 2020. DOI: 10.1002/gch2.202000055.
doi: 10.1002/gch2.202000055 |
[25] |
QI Q, WANG W, WANG Y, et al. Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber membrane[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.116595.
doi: 10.1016/j.seppur.2020.116595 |
[26] |
JIN Y, CHANG J, SHI Y, et al. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation[J]. Journal of Materials Chemistry A, 2018, 6(17): 7942-7949.
doi: 10.1039/C8TA00187A |
[27] |
HUANG J, HU Y, BAI Y, et al. Novel solar membrane distillation enabled by a PDMS/CNT/PVDF membrane with localized heating[J]. Desalination, 2020. DOI: 10.1016/j.desal.2020.114529.
doi: 10.1016/j.desal.2020.114529 |
[28] |
LI D, ZHANG X, ZHANG S, et al. A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.128916.
doi: 10.1016/j.chemosphere.2020.128916 |
[29] |
GAO T, LI Y, CHEN C, et al. Architecting a floatable, durable, and scalable steam generator: hydrophobic/hydrophilic bifunctional structure for solar evaporation enhancement[J]. Small Methods, 2019. DOI: 10.1002/smtd.201800176.
doi: 10.1002/smtd.201800176 |
[30] |
XU W, HU X, ZHUANG S, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018. DOI: 10.1002/aenm.201702884.
doi: 10.1002/aenm.201702884 |
[31] | LI W, DENG L, HUANG H, et al. Janus photothermal membrane as an energy generator and a mass-transfer accelerator for high-efficiency solar-driven membrane distillation[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 26861-26869. |
[32] |
WU T, LI H, XIE M, et al. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating[J]. Materials Today Energy, 2019, 12: 129-135.
doi: 10.1016/j.mtener.2018.12.008 |
[33] |
HE M T, LIU H J, WANG L M, et al. One-step fabrication of a stretchable and anti-oil-fouling nanofiber membrane for solar steam generation dagger[J]. Materials Chemistry Frontiers, 2021, 5: 3673-3680.
doi: 10.1039/D1QM00101A |
[34] |
ZHAO J, HUANG Q, GAO S, et al. In situ photo-thermal conversion nanofiber membrane consisting of hydrophilic PAN layer and hydrophobic PVDF-ATO layer for improving solar-thermal membrane distil-lation[J]. Journal of Membrane Science, 2021. DOI: 10.1016/j.memsci.2021.119500.
doi: 10.1016/j.memsci.2021.119500 |
[35] |
XU Y, XU H, ZHU Z, et al. A mechanically durable, sustained corrosion-resistant photothermal nanofiber membrane for highly efficient solar distillation[J]. Journal of Materials Chemistry A, 2019, 7(39): 22296-22306.
doi: 10.1039/C9TA05042F |
[36] |
FAN X, LV B, XU Y, et al. Electrospun reduced graphene oxide/polyacrylonitrile membrane for high-performance solar evaporation[J]. Solar Energy, 2020, 209: 325-333.
doi: 10.1016/j.solener.2020.09.013 |
[37] |
HUANG Q, GAO S, HUANG Y, et al. Study on photothermal PVDF/ATO nanofiber membrane and its membrane distillation performance[J]. Journal of Membrane Science, 2019, 582: 203-210.
doi: 10.1016/j.memsci.2019.04.019 |
[38] | ZHU B, KOU H, LIU Z, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35005-35014. |
[39] |
LIU H, LIU Y, WANG L, et al. Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation[J]. Carbon, 2021, 177: 199-206.
doi: 10.1016/j.carbon.2021.02.081 |
[40] |
ZHAO Q, DU C, JIA Y, et al. Solar-powered Janus membrane for one-step conversion of sewage to clean water[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.124131.
doi: 10.1016/j.cej.2020.124131 |
[41] |
PENG F, XU J, BAI X, et al. A Janus solar evaporator with 2D water path for highly efficient salt-resisting solar steam generation[J]. Solar Energy Materials and Solar Cells, 2021. DOI: 10.1016/j.solmat.2020.110910.
doi: 10.1016/j.solmat.2020.110910 |
[42] | QIN Z, SUN H, TANG Y, et al. Bioinspired hydrophilic-hydrophobic Janus composites for highly efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19467-19475. |
[43] |
CHEN M, LIN X, ZENG C, et al. Poly (p-phenylene benzobisoxazole) nanofiber/reduced graphene oxide composite aerogels toward high-efficiency solar steam generation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2020.125997.
doi: 10.1016/j.colsurfa.2020.125997 |
[44] | DENG X, NIE Q, WU Y, et al. Nitrogen-doped unusually superwetting, thermally insulating, and elastic graphene aerogel for efficient solar steam gener-ation[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26200-26212. |
[45] |
MENG X, XU W, LI Z, et al. Coupling of hierarchical Al2O3/TiO2 nanofibers into 3D photothermal aerogels toward simultaneous water evaporation and purifi-cation[J]. Advanced Fiber Materials, 2020, 2(2): 93-104.
doi: 10.1007/s42765-020-00029-9 |
[46] | LI H, WEN H, LI J, et al. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26033-26040. |
[47] |
DONG X, CAO L, SI Y, et al. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201908269.
doi: 10.1002/adma.201908269 |
[48] | MEI T, CHEN J, ZHAO Q, et al. Nanofibrous aerogels with vertically aligned microchannels for efficient solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42686-42695. |
[1] | ZHOU Wen, YU Jianyong, ZHANG Shichao, DING Bin. Preparation of green-solvent-based polyamide nanofiber membrane and its air filtration performance [J]. Journal of Textile Research, 2023, 44(01): 56-63. |
[2] | WANG Hongjie, HU Zhongwen, WANG He, FENG Quan, LIN Tong. Research progress in one-way water transport textiles and their applications [J]. Journal of Textile Research, 2022, 43(11): 195-202. |
[3] | YU Yangxiao, LI Feng, WANG Yuyu, WANG Shanlong, WANG Jiannan, XU Jianmei. Preparation and properties of polypyrole/silk fibroin conductive nanofiber membranes [J]. Journal of Textile Research, 2022, 43(10): 16-23. |
[4] | LI Weiping, YANG Guixia, CHENG Zhiqiang, ZHAO Chunli. Preparation and properties of polyvinylpyrrolidone/aloe composite nanofiber membrane [J]. Journal of Textile Research, 2022, 43(08): 55-59. |
[5] | FEI Jianwu, LÜ Mingze, LIU Liwei, WANG Chunhong, HAN Zhenbang. Construction of air-liquid-solid tri-phase system from bilayer micro/nanofiber membrane and its photocatalytic performance [J]. Journal of Textile Research, 2022, 43(06): 37-43. |
[6] | CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69. |
[7] | YANG Ke, YAN Jun, XIAO Yong, XU Jing, CHEN Lei, LIU Yong. Preparation of MnOx/carbon nanofiber membrane free-standing cathodes for zinc ion battery based on electrochemical deposition and their electrochemical characteristics [J]. Journal of Textile Research, 2022, 43(05): 77-85. |
[8] | XU Zhaobao, HE Cui, ZHAO Jinchao, HUANG Leping. Preparation of coaxially electrospun multi-level fiber membrane and its phase change temperature-regulating performance [J]. Journal of Textile Research, 2022, 43(02): 69-73. |
[9] | GE Can, ZHANG Chuanxiong, FANG Jian. Research progress in fibrous materials for interfacial solar steam generation system [J]. Journal of Textile Research, 2021, 42(12): 166-173. |
[10] | CHEN Yali, ZHAO Guomeng, REN Lipei, PAN Luqi, CHEN Bei, XIAO Xingfang, XU Weilin. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials [J]. Journal of Textile Research, 2021, 42(08): 115-121. |
[11] | YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68. |
[12] | WANG Chunhong, LI Ming, LONG Bixuan, CAI Yingjie, WANG Lijian, ZUO Qi. Preparation and performance of polyvinyl alcohol/sodium alginate/berberine medical dressing [J]. Journal of Textile Research, 2021, 42(05): 16-22. |
[13] | ZHAO Xinzhe, WANG Shaoxia, GAO Jing, WANG Lu. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes [J]. Journal of Textile Research, 2021, 42(04): 33-41. |
[14] | CHENG Yue, AN Qi, LI Dawei, FU Yijun, ZHANG Wei, ZHANG Yu. Preparation of SiO2 in-situ doped polyvinylidene fluoride nanofiber membrane and its properties [J]. Journal of Textile Research, 2021, 42(03): 71-76. |
[15] | ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49. |
|