Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 55-59.doi: 10.13475/j.fzxb.20210700605

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of polyvinylpyrrolidone/aloe composite nanofiber membrane

LI Weiping1, YANG Guixia1(), CHENG Zhiqiang1, ZHAO Chunli2   

  1. 1. College of Resources and Environment, Jilin Agricultural University, Changchun, Jilin 130118, China
    2. College of Horticulture, Jilin Agricultural University, Changchun, Jilin 130118, China
  • Received:2021-07-01 Revised:2022-03-12 Online:2022-08-15 Published:2022-08-24
  • Contact: YANG Guixia E-mail:9677667@qq.com

Abstract:

In order to promote the antibacterial properties of polyvinylpyrrolidone (PVP), the natural bacteriostatic agent aloe was loaded in PVP. PVP/Aloe composite nanofiber membranes with different mass ratios were prepared by electrospinning. The morphology, hydrophilicity (hydrophobicity), particle size and group structure of the composite nanofiber membrane were characterized and analyzed by means of scanning electron microscope, Fourier transform infrared spectroscopy, contact angle analyzer and surface tensiometer. The results showed that due to the physical interaction between aloe and PVP, the prepared nanofibrous membrane showed a fritter-like structure that was separated from each other and adhered to each other. When the mass ratio of PVP and aloe vera was 10∶4, the fritter-like structure formed was the most obvious. The antibacterial experiment shows that the nanofiber membrane has antibacterial effect on Staphylococcus aureus, and the antibacterial rate reaches 86.2%.

Key words: aloe, polyvinylpyrrolidone, medical dressing, electrospinning, nanofiber membrane, antibacterial property

CLC Number: 

  • TS

Fig.1

SEM images and diameter distribution of PVP/Aloe composite nanofiber membranes with different mass ratios"

Fig.2

Water contact angle of PVP/Aloe composite nanofiber membranes at different time"

Fig.3

Analysis of surface tension of PVP/Aloespinning solution with different mass ratios"

Fig.4

FT-IR spectra of PVP/Aloe composite nanofiber membranes with different mass ratios"

Fig.5

Analysis results of inhibition zone of pure PVP, PVP/Aloe composite nanofiber membranes. (a)Pure PVP;(b)PVP/Aloe composite nanofiber membranes(10∶3);(c)PVP/Aloe composite nanofiber membranes(10∶6)"

[1] KAYE K S, PETTY L A, SHORR A F, et al. Current epidemiology, etiology, and burden of acute skin infections in the United States[J]. Clinical Infectious Diseases, 2019(S3): 193-199.
[2] SRIDHAR R, LAKSHMINARAYANAN R, MADHAIYAN K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J]. Chemical Society Reviews, 2015, 46(15): 790-814.
[3] MENG J, AGRAHARI V, YOUM I. Advances in targeted drug delivery approaches for the central nervous system tumors: the inspiration of nanobiotechno-logy[J]. Journal of Neuroimmune Pharmacology, 2016, 12(1): 1-15.
[4] 舒泉水, 陈仕平, 张鹏, 等. 聚乙烯醇/海藻酸钠/甲基丙烯酸缩水甘油酯复合纳米纤维制备与性能[J]. 材料科学与工程学报, 2020, 38(1): 43-47.
SHU Quanshui, CHEN Shiping, ZHANG Peng, et al. Preparation and properties of polyvinyl alcohol/sodium alginate/glycidyl methacrylate composite nanofibers[J]. Journal of Materials Science and Engineering, 2020, 38(1): 43-47.
[5] HOMAEIGOHAR S, BOCCACCINI A R. Antibacterial biohybrid nanofibers for wound dressings[J]. Acta Biomaterialia, 2020, 107:25-49.
doi: 10.1016/j.actbio.2020.02.022
[6] SAGHAZADEH S, RINOLDI C, SCHOT M, et al. Drug delivery systems and materials for wound healing applications[J]. Advanced Drug Delivery Reviews, 2018, 127:138-166.
doi: 10.1016/j.addr.2018.04.008
[7] MOFOKENG J P, LUYT A S. Morphology and thermal degradation studies of melt-mixed poly(hydroxybutyrate-co-valerate) (PHBV)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler[J]. Journal of Materials Science, 2015, 50(10): 3812-3824.
doi: 10.1007/s10853-015-8950-z
[8] LEE H, XU G, KHARAGHANI D, et al. Electrospun tri-layered zein/PVP-GO/zein nanofiber mats for providing biphasic drug release profiles[J]. International Journal of Pharmaceutics, 2017, 531(1): 101-107.
doi: 10.1016/j.ijpharm.2017.08.081
[9] CAI C, GONG H, LI W, et al. A flexible and highly sensitive pressure sensor based on three-dimensional electrospun carbon nanofibers[J]. RSC Advances, 2021, 11(23): 13898-13905.
doi: 10.1039/D0RA10803K
[10] YUSSUF A A, MASSOUMI I, HASSAN A. Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability proper-ties[J]. Journal of Polymers & the Environment, 2010, 18(3): 422-429.
[11] YUAN W, ZHANG J, LIU L, et al. Visible light photocatalysis of V2O5/TiO2 nanoheterostructures prepared via electrospinning[J]. Materials Letters, 2012, 75: 95-98.
doi: 10.1016/j.matlet.2012.01.074
[12] LI R, CHENG Z, WEN R, et al. Novel SA@Ca2+/RCSPs core-shell structure nanofibers by electrospinning for wound dressings[J]. RSC Advances, 2018, 8(28): 15558-15566.
doi: 10.1039/C8RA00784E
[13] LUISA G C, CLAUDIA C, MARTHA L. Release behavior and antibacterial activity of chitosan/alginate blends with aloe vera and silver nanoparticles[J]. Marine Drugs, 2017, 15(10): 328.
doi: 10.3390/md15100328
[14] KUPNIK K, PRIMOZIC M, KNEZ Z, et al. Antimicrobial efficiency of aloe arborescens and aloe barbadensis natural and commercial products[J]. Plants (Basel), 2021, 10(1): 92.
[15] SILVA S S, CARIDADE S G, MANO J F, et al. Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications[J]. Carbohydrate Polymers, 2013, 98(1): 581-588.
doi: 10.1016/j.carbpol.2013.06.022
[16] NEJATZADEH-BARANDOZI F. Antibacterial activities and antioxidant capacity of aloe vera[J]. Organic and Medicinal Chemistry Letters, 2013, 3(1): 1-8.
doi: 10.1186/2191-2858-3-1
[17] KUMAR R, SINGH A K, GUPTA A, et al. Therapeutic potential of aloe vera: a miracle gift of nature[J]. Phytomedicine, 2019. DOI: 10.1016/j.phymed. 2019.152996.
doi: 10.1016/j.phymed. 2019.152996
[18] SAHU P K, GIRI D D, SINGH R, et al. Therapeutic and medicinal uses of aloe vera: a review[J]. Pharmacology & Pharmacy, 2013, 4(8): 599-610.
doi: 10.4236/pp.2013.48086
[19] KHANZADA H, SALAM A, QADIR M B, et al. Fabrication of promising antimicrobial aloe vera/PVA electrospun nanofibers for protective clothing[J]. Materials (Basel), 2020. DOI: 10.3390/ma13173884.
doi: 10.3390/ma13173884
[20] XU F, WANG H, ZHANG J, et al. A facile design of EGF conjugated PLA/gelatin electrospun nanofibers for nursing care of in vivo wound healing applications[J]. Journal of Industrial Textiles, 2020. DOI: 10.1177/1528083720976348.
doi: 10.1177/1528083720976348
[21] LI R, CHENG Z, YU X, et al. Preparation of antibacterial PCL/PVP-AgNP Janus nanofibers by uniaxial electrospinning[J]. Materials Letters, 2019, 254:206-209.
doi: 10.1016/j.matlet.2019.07.075
[22] UNNITHAN A R, GNANASEKARAN G, SATHISHKUMAR Y, et al. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing[J]. Carbohydrate Polymers, 2014, 102: 884-892.
doi: 10.1016/j.carbpol.2013.10.070
[23] MIRMAJIDI T, CHOGAN F, REZAYAN A H, et al. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin[J]. International Journal of Pharmaceutics, 2021. DOI: 10.1016/j.ijpharm. 2021.120213.
doi: 10.1016/j.ijpharm. 2021.120213
[1] ZHU Yanlong, GU Yingshu, GU Xiaoxia, DONG Zhenfeng, WANG Bin, ZHANG Xiuqin. Preparation and properties of poly(lactic acid)/ZnO fiber with antibacterial and anti-ultraviolet functions [J]. Journal of Textile Research, 2022, 43(08): 40-47.
[2] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[3] FEI Jianwu, LÜ Mingze, LIU Liwei, WANG Chunhong, HAN Zhenbang. Construction of air-liquid-solid tri-phase system from bilayer micro/nanofiber membrane and its photocatalytic performance [J]. Journal of Textile Research, 2022, 43(06): 37-43.
[4] OU Kangkang, QI Linya, HOU Yijun, FAN Tianhua, QI Kun, WANG Baoxiu, WANG Huaping. Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings [J]. Journal of Textile Research, 2022, 43(06): 49-56.
[5] LI Qin, LI Xingxing, XIE Fangfang, ZHOU Wenlong, CHEN Kaiyi, LIU Yuqing. Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods [J]. Journal of Textile Research, 2022, 43(05): 178-184.
[6] CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69.
[7] CHEN Mingjun, LI Haoyi, YANG Weimin. Physical model and effects of electric field on jets in polymer melt differential electrospinning [J]. Journal of Textile Research, 2022, 43(05): 70-76.
[8] YANG Ke, YAN Jun, XIAO Yong, XU Jing, CHEN Lei, LIU Yong. Preparation of MnOx/carbon nanofiber membrane free-standing cathodes for zinc ion battery based on electrochemical deposition and their electrochemical characteristics [J]. Journal of Textile Research, 2022, 43(05): 77-85.
[9] SUN Zheru, ZHANG Qingle, HAO Lincong, CHENG Lu, XIA Xin. Preparation and performance of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry structure [J]. Journal of Textile Research, 2022, 43(04): 40-46.
[10] JIN Xu, LIU Fang, DU Xuan, HUA Chao, GONG Xuzhong, ZHANG Xiuqin, WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation [J]. Journal of Textile Research, 2022, 43(03): 201-209.
[11] ZHANG Yu, LIU Laijun, LI Chaojing, JIN Qiaoqiao, XIE Qianyang, LI Peilun, WANG Fujun, WANG Lu. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability [J]. Journal of Textile Research, 2022, 43(03): 24-30.
[12] ZHANG Aiqin, HAO Jiacheng, WANG Zhi, WANG Yongchao, LIU Shuqiang, DONG Hailiang, JIA Husheng, XU Bingshe. Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers [J]. Journal of Textile Research, 2022, 43(03): 50-57.
[13] TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70.
[14] WU Yang, LIU Fangtian, CAO Mengjie, CUI Jinhai, DENG Hongbing. Progress in biomass fiber medical dressings [J]. Journal of Textile Research, 2022, 43(03): 8-16.
[15] ZHOU Xiaoya, MA Dinghai, HU Chengye, HONG Jianhan, LIU Yongkun, HAN Xiao, YAN Tao. Continuous preparation and application of polyester/polyamide 6 nanofiber coated yarns [J]. Journal of Textile Research, 2022, 43(02): 110-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!