Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (05): 92-96.doi: 10.13475/j.fzxb.20210700805

• Textile Engineering • Previous Articles     Next Articles

Effect of moisture regain on strength of quartz yarns before and after weaving

YU Pengju1, WANG Lili2, ZHANG Wenqi3, LIU Yang1, LI Wenbin1()   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Hubei Sanjiang Boats Science & Technology Co., Ltd., Xiaogan, Hubei 432000, China
    3. Hubei Sanjiang Aerospace Hongyang Electromechanical Co., Ltd., Xiaogan, Hubei 432000, China
  • Received:2021-07-01 Revised:2021-12-03 Online:2022-05-15 Published:2022-05-30
  • Contact: LI Wenbin E-mail:Wenbin_li@wtu.edu.cn

Abstract:

In order to study the factors affecting the strength of quartz yarns, the cross-sectional morphology of quartz fiber was characterized, the tensile properties of quartz yarns with different moisture regains and linear densities before and after weaving were tested, and the effects of warping, shedding as well as beat-up on the mechanical properties of quartz yarns were also investigated. The influence of the sizing agent on the mechanical properties of the quartz fiber was also explored. The results show that the tensile strength of quartz yarn significantly decreases with the increase of moisture regain. When the moisture regain of 95 tex quartz fiber yarn is 100%, the tensile strength decreases by 41% compared with 0%. The decrease of tensile strength of 95 tex quartz fabric that was woven under 1.0% moisture regain is as high as 60.94%. The addition of sizing agent can enhance the quartz fiber strength. When the 390 tex quartz fiber yarn is added with 100% sizing agent, the yarn strength increases by 17%. The hydrolyzing of silica and the hygroscopicity of wetting agent are the main reasons for the decrease of the strength of quartz fiber.

Key words: quartz fiber yarns, moisture regain, strength, weaving, sizing agent

CLC Number: 

  • TS102.4

Fig.1

Microscopic morphology of quartz fiber. (a) Fracture section(×15 000); (b) Fiber surface morphology(×10 000); (c) Interfibrillary morphology(×10 000)"

Fig.2

Effect of moisture regain on fracture strength"

Fig.3

Influence of moisture regain on fracture strain"

Fig.4

Quartz fiber yarns of 390 tex weaving damage (×180)"

Tab.1

Damage of warp yarn during quartz fiber yarns weaving"

线密度/tex 回潮率/% 断裂强度损失率/%
经纱1 经纱2
95 0.8 22.97 39.19
0.9 11.11 39.68
1.0 12.50 60.94
195 0.5 15.73 24.72
0.6 10.81 48.65
2.7 13.51 52.70
390 1.0 6.59 42.86
1.7 9.41 52.94
5.3 9.30 65.12

Fig.5

Effect of concentration of wetting agent on mechanical properties of quartz fiber yarns of 390 tex"

[1] 李刚, 欧书方, 赵敏健. 石英玻璃纤维的性能和用途[J]. 玻璃纤维, 2007,(4): 9-13.
LI Gang, OU Shufang, ZHAO Minjian. Properties and uses of quartz glass fiber[J]. Fiber Glass, 2007, (4): 9-13.
[2] 高涵. 石英纤维增强复合材料的隔热性能研究[D]. 天津: 天津工业大学, 2019: 1-14.
GAO Han. Thermal insulation properties of quartz fiber reinforced composites[D]. Tianjin: Tiangong University, 2019: 1-14.
[3] 王冠, 高堂铃, 付刚, 等. 石英纤维布的界面处理对氰酸酯基胶膜性能的影响[J]. 化学与粘合, 2018, 40(3): 173-176.
WANG Guan, GAO Tangling, FU Gang, et al. Study on the effect of interface treatment of quartz fabric on the performance of cyanate ester based adhesive film[J]. Chemistry and Adhesion, 2018, 40(3): 173-176.
[4] 张春燕. 天线罩用针刺复合织物研制[D]. 天津: 天津工业大学, 2017: 47-53.
ZHANG Chunyan. Preparation of needled composite fabric for radome[D]. Tianjin: Tiangong University, 2017: 47-53.
[5] 李鹏, 杜瑞奎, 刘亚青, 等. 环氧树脂/石英纤维透波复合材料制备[J]. 工程塑料应用, 2021, 49(2): 29-33.
LI Peng, DU Ruikui, LIU Yaqing, et al. Preparation of epoxy resin/quartz fiber wave-transparent composites[J]. Engineering Plastics Application, 2021, 49(2): 29-33.
[6] 孙绯. 单层高厚石英织物的设计及其可成型性研究[D]. 天津: 天津工业大学, 2015: 24-39.
SUN Fei. Study on design and formability of single layer high thickness quartz fabric[D]. Tianjin: Tiangong University, 2015: 24-39.
[7] 夏新. 石英玻璃纤维用有机硅型浸润剂及其制备方法:201610510764.4[P]. 2016-12-07.
XIA Xin. Silicone type infiltrating agent for quartz glass fiber and preparation method there of: 201610510764.4[P]. 2016-12-07.
[8] 宋来福. 石英纤维表面处理及2.5D机织复合材料性能研究[D]. 天津: 天津工业大学, 2018: 3-14.
SONG Laifu. Study on surface treatment of quartz fiber and properties of 2.5D woven composites[D]. Tianjin: Tiangong University, 2018: 3-14.
[9] 王佩艳, 王富生, 岳珠峰. 石英纤维布氰酸酯树脂基复合材料的环境试验性能研究[J]. 实验力学, 2010, 25(3): 325-330.
WANG Peiyan, WANG Fusheng, YUE Zhufeng. Experimental study of quartz fibre cyanate resin matrix gfrp performance in variant environment[J]. Journal of Experimental Mechanics, 2010, 25(3): 325-330.
doi: 10.1007/BF02321330
[10] 刘钧, 边佳燕, 鲍铮, 等. 吸湿环境对石英纤维增强环氧树脂面板/PMI泡沫夹层结构复合材料吸湿行为的影响[J]. 国防科技大学学报, 2019, 41(5): 193-198.
LIU Jun, BIAN Jiayan, BAO Zheng, et al. Effect of environment on moisture absorption behavior of quartz fiber reinforced epoxy panel/PMI core sandwich composites[J]. Journal of National University of Defense Technology, 2019, 41(5): 193-198.
[11] 张亚娟, 成竹, 刘海燕. 环境因素对石英纤维增强氰酸酯树脂基复合材料力学性能的影响[J]. 工程塑料应用, 2013(11): 84-87.
ZHANG Yajuan, CHENG Zhu, LIU Haiyan. Effect of environment factors on mechanical properties of quartz fiber reinforced cyanate ester composites[J]. Engineering Plastics Application, 2013(11): 84-87.
[12] 李永宏, 廉芬, 马紫微, 等. 石英玻璃界面处水的异常冲击相变现象[J]. 运城学院学报, 2014, 32(5): 36-39.
LI Yonghong, LIAN Fen, MA Ziwei, et al. The abnormal phase transition of water at quartz/water interfaces under shock compression process[J]. Journal of Yuncheng University, 2014, 32(5): 36-39.
[13] 郑骏驰. 纳米二氧化硅的表面修饰及其对天然橡胶复合材料结构与性能的影响[D]. 北京: 北京化工大学, 2018: 62-75.
ZHENG Junchi. Surface modification of nano silica and its effect on the structure and properties of natural rubber composites[D]. Beijing: Beijing University of Chemical Technology, 2018: 62-75.
[14] KIM H N, LEE S K. Atomic structure and dehydration mechanism of amorphous silica: insights from 29Si and 1H solid-state MAS NMR study of SiO2 nanoparticles[J]. Geochimica Et Cosmochimica Acta, 2013, 120: 39-64.
doi: 10.1016/j.gca.2013.05.047
[1] LIU Yu, XIE Ruyi, SONG Yawei, QI Yuanzhang, WANG Hui, FANG Kuanjun. One-bath pad dyeing technology for polyester/cotton fabric [J]. Journal of Textile Research, 2022, 43(05): 18-25.
[2] SHEN Chunya, LEI Junjie, RU Xin, PENG Laihu, HU Xudong. Multi-objective large-scale dynamic scheduling for weaving workshops based on improved NSGAII [J]. Journal of Textile Research, 2022, 43(04): 74-83.
[3] GUO Min, WANG Jing'an, GUO Mingrui, GAO Weidong. Evaluation of anti-pilling performance of sized yarns based on hairiness image detection [J]. Journal of Textile Research, 2022, 43(03): 78-82.
[4] LI Wei, ZHANG Zhengqiao, XU Zhenzhen, ZHANG Chaohui. Preparation and sizing properties of amphiphilic diblock grafted starch sizing agent [J]. Journal of Textile Research, 2022, 43(01): 141-146.
[5] HUANG Hongbo, HAN Zongbao, GUO Heng, YAO Jinbo, JIANG Huiyu, XIA Zhigang, WANG Yunli. Influence of thermal and moist treatments on shape retention performance of anti-creasing wool fabrics [J]. Journal of Textile Research, 2021, 42(12): 119-124.
[6] ZHU Weiwei, GUAN Liyuan, LONG Jiajie, SHI Meiwu. Effects of supercritical CO2 fluid treatment time on structure and properties of diacetate fibers [J]. Journal of Textile Research, 2021, 42(12): 97-102.
[7] GUO Min, GAO Weidong, ZHU Bo, LIU Jianli, GUO Mingrui. Test method for abrasion resistance of sized yarn under simulated weaving conditions [J]. Journal of Textile Research, 2021, 42(11): 46-50.
[8] WEI Fayun, YANG Fan, WANG Hailou, YU Bin, ZOU Xueshu, ZHANG Wei. Preparation and mechanical properties of cementitious composites reinforced by modified polyvinyl alcohol fiber [J]. Journal of Textile Research, 2021, 42(10): 53-60.
[9] HE Junyan, LI Mingfu, LIAN Wenwei, HUANG Tao, ZHANG Jin. Ultrasonic-assisted chemical degumming process for making pineapple leaf fiber [J]. Journal of Textile Research, 2021, 42(09): 83-89.
[10] GUO Heng, HUANG Hongbo, YAO Jinbo, JIANG Huiyu, XIA Zhigang, WANG Yunli. Effect of household washing on properties of anti-creasing cotton fabrics [J]. Journal of Textile Research, 2021, 42(07): 129-136.
[11] TAN Yanjun, HUO Qian, LIU Shurui. Preparation and ultraviolet light resistance of poly(p-phenylene benzoxazole) fiber coated with nano titanium dioxide [J]. Journal of Textile Research, 2021, 42(07): 69-75.
[12] HUANG Jinbo, ZHU Chengyan, ZHANG Hongxia, HONG Xinghua, ZHOU Zhifang. Design of three-dimensional spacer fabrics based on rapier looms [J]. Journal of Textile Research, 2021, 42(06): 166-170.
[13] LU Zhenqian, YANG Yaru, XUN Yong. Research review of fiber effect on properties of cement-based composite [J]. Journal of Textile Research, 2021, 42(04): 177-183.
[14] YANG Wenjing, WU Hailiang, MA Jianhua, YAO Yijun, SHEN Yanqin. Preparation and properties of succinic anhydride acylated gelatin sizing agent for wool yarn sizing [J]. Journal of Textile Research, 2021, 42(04): 93-100.
[15] LI Wei, ZHANG Zhengqiao, WU Lanjuan, LIU Qian, WEI Anfang, CHENG Xuedong, WANG Tairan. Influence of methylene succinic acid cross-linking on properties of starch sizing agents [J]. Journal of Textile Research, 2021, 42(03): 110-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!