Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (01): 228-237.doi: 10.13475/j.fzxb.20210702510

• Comprehensive Review • Previous Articles     Next Articles

Research progress in dual performance in heat-storage protection and heat-release hazard of thermal protective clothing

ZHU Xiaorong1, HE Jiazhen1,2(), XIANG Youhui1, WANG Min2   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2021-07-07 Revised:2022-09-21 Online:2023-01-15 Published:2023-02-16

Abstract:

Significance When protective clothing effectively insulates heat transfer during the heat exposure stage in either a high or low heat radiation environment, the protective clothing tends to store a lot of heat due to temperature increase in the fabric system, and heat accumulation is an important cause for skin burns. The workers' movement or external pressure makes the clothing contact with the workers' skin more likely which intensifies heat release. Hence, thermal protective clothing has dual performance of heat-storage protection during thermal exposure and heat-release hazard to human body during the cooling stage. Therefore, in order to evaluate comprehensively the dual performance of thermal protective clothing, which is conducive to promoting the design and development of thermal protective clothing and better protecting high temperature workers from burns, this paper summarizes the research on the dual performance of thermal protective clothing at home and abroad.
Progress The relevant evaluation methods of thermal storage in protective clothing include experimental evaluation and numerical simulation. In this paper, the experimental evaluation and numerical simulation research status of heat storage of protective clothing are compared and clarified. The experimental evaluation method comprehensively evaluates the whole heat transfer stage of the fabric system. The considered factors in using numerical simulation method are more comprehensive, and the calculation is becoming faster and more accurate. This review provides analysis of the relevant influencing factors of the dual performance of protective clothing from the aspects of heat-storage protection and heat-release hazard. The influencing factors of heat storage characteristics during thermal exposure are summarized from the clothing factors, environmental factors, and human factors. Clothing factors include the basic physical properties of clothing, air layer, reflective tape and reinforcement materials, environmental factors include heat source form, heat source intensity and heat exposure time, human factors include movement and sweating of the human body. These factors significantly affect the heat storage performance of clothing. In addition, different states and conditions of the fabric when releasing heat cause different degrees of heat damage to the human body. The influences of fabric physical properties, configuration of air layer, fiber moisture, fabric compression on the hazardous performance of protective fabrics caused by heat-discharge in the cooling stage are discussed.
Conclusion and Prospect Thermal protective clothing has both the positive effect of thermal protection and the negative effect of thermal harm to human skin. Thermal protective clothing worn for a certain period of time will produce clothing heat storage and heat release process in all heat environments, and different cooling environments will affect the release amount and release rate of heat storage. Moreover, when taking the dual characteristics of thermal protective clothing into comprehensive consideration, the heat storage performance of the fabric is not proportional to its heat release performance. Hence, starting from the dual performance of heat storage and release of thermal protective clothing, it is of great significance to comprehensively and accurately evaluate the thermal protection performance of protective clothing. As researchers pay more and more attention to the dual performance of heat-storage protection and heat-release hazard of fabrics or clothing, it is suggested that for future research, diversified heat exposure environment and cooling environment should be established for the actual application scenarios of thermal protective clothing, and researchers can establish a sound thermal protection performance evaluation system, and explore its optimal compatibility design based on the dual effect of thermal protective clothing's heat storage and release. The heat-storage and heat-release characteristics of the heat protection fabric system with new materials and the correlation between the heat-storage volume and heat-release volume also need to be explored.

Key words: thermal protective clothing, stored thermal energy, heat release, thermal hazard, skin burn

CLC Number: 

  • TS941.73

Tab.1

Test standards of thermal protective performance considering heat-release effect of fabrics"

标准编号与名称 热暴露类型 热流密度/
(kW·m-2)
装置(传感器/热源) 烧伤准则
与模型
测试指标
ASTM F 2703—2013《预测烧伤的阻燃服装材料非稳态传热评估的标准试验方法》 50%热对流、
50%热辐射
84±2 2个Meker或Fisher燃烧器(固定在垂直方向45°处且带有9个T-150红外石英管) Stoll烧伤准则 热性能估计值
(TPE)
ASTM F 2702—2015《预测烧伤的阻燃服装材料辐射热防护性能的标准试验方法》 100%热辐射 21±2
84±2
5个500 W的红外石英灯 Stoll烧伤准则 热辐射性能
(RHP)
ASTM F 2731—2018《消防人员防护服系统热量传输和储存能量测量的标准试验方法》 低热辐射 8.5±0.5 黑色陶瓷热辐射板 Henriques烧伤模型 程序A:最小热暴露时间;程序B:固定热暴露时间60、90、120 s
GB/T 38302—2019《防护服装 热防护性能测试方法》 热对流、
热辐射
84±2 可燃气喷射的2台燃烧灯与9只500 W石英红外灯管 Stoll烧伤准则 热防护性能(TPP)、热性能估计值(TPE)
ASTM F 1930—2018《用假人评估轰然条件下阻燃服装阻燃性能的标准实验方法》 热对流 84±4.2 8个燃烧器 Henriques烧伤模型 2/3级烧伤百分比、
总烧伤百分比等
ISO 13506—2:2017《防热阻燃防护服 第2部分:皮肤烧伤预测计算要求和试验案例》 热对流 84±4.2 至少8个喷嘴火炬燃烧器 Henriques烧伤模型 烧伤百分比、总传递能量、能量传递系数等
GB/T 23467—2009《用假人评估轰燃条件下服装阻燃性能的测试方法》 热对流 84±4.2 至少8个燃烧器 Henriques烧伤模型 2/3级烧伤面积、总烧伤面积

Tab.2

Studies on heat transfer numerical models considering thermal exposure and cooling stage"

时间 文献 模型特点 模型中模拟的环境 模型中考虑的因素
热源 热暴露时间 冷却条件
2005 [19] 多孔织物的热湿传递耦合模型 闪火环境 4 s 空气中自然冷却达60 s 水分迁移、空气层
2006 [6] 单层织物一维有限元模型 80 kW/m2热辐射与热对流混合热 15 s 连续在净对流热通量为10 kW/m2下冷却 冷却过程中单层织物的热量分布
2006 [20] 采用皮肤热波模型 辐射板温度400 ℃ 10 s 自然冷却10 s 织物的结构参数、热性能、气压、空气层厚度以及短时间内高热流入射到皮肤表面的热波效应
2008 [21] 多层织物热湿传递模型 闪火环境 4 s 空气中自然冷却达60 s 水分、空气层、纤维密度、导电性、比热容、织物厚度、织物初始温度、环境条件
2010 [22] 一维有限体积模型 83 kW/m2热辐射与热对流混合热 10 s 自然冷却60 s 空气层厚度随时间变化
2011 [23] 假设空气层中为传导-辐射耦合传热 83 kW/m2热辐射与热对流混合热 10 s 自然冷却60 s 织物层之间以及织物和皮肤之间的空气层
2013 [24] 一维瞬态传热模型 83 kW/m2热辐射与热对流混合热 10 s 自然冷却60 s 人体的运动挤压造成的空气层周期变化
2014 [25] 多层织物的热传递模型 0.4~1.2 kW/m2热辐射 40 min 自热冷却到达环境温度 织物厚度、密度、热性能、光学性能、空气层厚度、热源条件、环境温度
2015 [26] 多层织物的热湿传递模型 2.5 kW/m2热辐射 750 s 自然冷却100 s 每个织物层和空气层的水分对外部辐射的吸收
2016 [27] 三层织物一维传热模型 8.5 kW/m2热辐射 300 s 自然冷却200 s 织物厚度、密度、热性能、光学性能、空气层厚度、环境温度
2016 [28] 辐射双通量,一维干态传热模型 8.5 kW/m2热辐射 300 s 自然冷却200 s 多孔织物中辐射热的吸收、透射、反射及自发射,空气层
2016 [29] 多孔介质的传热模型 8.5 kW/m2热辐射 60 s
300 s
0.25~133 kPa压力下60 s
13.8 kPa压力下600 s
空气层、织物厚度以及由于施加压力导致的织物中空气含量的动态变化
2018 [30] 基于生物传热及Henriques烧伤积分的传热模型 69 kPa饱和热蒸汽 10 s 自然冷却110 s 蒸汽喷嘴与织物间的冲击射流、织物内蒸汽流动

Tab.3

Research status of different heat source types"

热源形式 文献 主要传热
方式
研究意义
火焰 [6] 热对流、
热辐射
运用有限元法建立了冷却阶段的一维传热模型,计算织物在冷却时的表观热容以及对流传热系数的变化
[22-23] 基于数值模拟探究空气层随时间的变化、织物层之间以及织物和皮肤之间的空气层、空气层周期变化等因素对皮肤表面温度的影响
[42] 评估在不同水平的热暴露持续时间下多层防护服中热量的传递和储存,并提出评价热防护性能的新指标
辐射热 [43] 热辐射 考虑织物的热蓄积,测试防水层透湿性对热防护性能的影响
[31] 在6.3~8.3 kW/m2的低水平热辐射下,评价多层织物系统内在热暴露阶段的能量储存及冷却阶段的能量释放
[44] 根据人体与热源之间热暴露距离和移动速度的动态变化,建立数值模型,研究热源距离对多层织物系统传热的影响
[45] 引入新指标探究织物性能、空气层和外加压力对织物热蓄积释放的影响
热水 [40] 热对流 热水更容易进入织物系统,导致织物系统的热物理性质(表面张力、导热率、热容量)发生变化,增加烫伤的可能
蒸汽热 [46-47] 热传导、
热对流
探究空气层的厚度、位置以及织物内部水分和外部水分对热暴露和冷却阶段的热防护和热危害性能
接触热 [48] 热传导 把相变材料加入到热防护服中,提高热暴露过程中的防护性能,降低冷却阶段的皮肤冷却速率
[1] MANDAL S, SONG G, ROSSI R. Thermal protective clothing for firefighters[M]. Cambridge: Woodhead Publishing, 2017:27-55.
[2] LI J, LU Y H, LI X. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fires[J]. Textile Research Journal, 2012, 82(12):1235-1243.
doi: 10.1177/0040517512436830
[3] WANG Y Y, LU Y H, LI J, et al. Effects of air gap entrapped in multilayer fabrics and moisture on thermal protective performance[J]. Fibers & Polymers, 2012, 13(5): 647-652.
[4] LAWSON J R. Firefighters' protective clothing and thermal environments of structural firefighting[J]. Performance of Protective Clothing, 1997, 1273(6):335-352.
[5] HOSCHKE B N. Standard and specifications for firefighters' clothing[J]. Fire Safety Journal, 1981, 4(2): 125-137.
doi: 10.1016/0379-7112(81)90011-4
[6] TORVI D A, THRELFALL T G. Heat transfer model of flame resistant fabrics during cooling after exposure to fire[J]. Fire Technology, 2006, 42(1): 27-48.
doi: 10.1007/s10694-005-3733-8
[7] HE J Z, CHEN Y, WANG L C, et al. Quantitative assessment of the thermal stored energy in protective clothing under low-level radiant heat exposure[J]. Textile Research Journal, 2018, 88(24):2867-2879.
doi: 10.1177/0040517517732084
[8] SONG G, WEI C, GHOLAMREZA F. Analyzing stored thermal energy and thermal protective performance of clothing[J]. Textile Research Journal, 2011, 81(11): 1124-1138.
doi: 10.1177/0040517511398943
[9] KAHN S A, PATEL J H, LENTZ C W, et al. Firefighter burn injuries: predictable patterns influenced by turnout gear[J]. Journal of Burn Care & Research, 2012, 33(1): 152-156.
[10] TECHNOLOGY F. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999, 35(3): 210-231.
doi: 10.1023/A:1015484426361
[11] 张梦莹, 苗勇, 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016, 37(6): 171-176.
ZHANG Mengying, MIAO Yong, LI Jun. Influence factors and evaluation methods of stored thermal energy in firefighters protective clothing[J]. Journal of Textile Research, 2016, 37(6): 171-176.
[12] SONG G, BARKER R L, HAMOUDA H, et al. Modeling the thermal protective performance of heat resistant garments in flash fire exposures[J]. Textile Research Journal, 2004, 74(12): 1033-1040.
doi: 10.1177/004051750407401201
[13] BARKER R L, DEATON A S, ROSS K A. Heat transmission and thermal energy storage in firefighter turnout suit materials[J]. Fire Technology, 2011, 47(3): 549-563.
doi: 10.1007/s10694-010-0151-3
[14] 翟丽娜, 李俊. 服装热防护性能测评技术的发展过程及现状[J]. 纺织学报, 2015, 36(7): 162-168.
ZHAI Li'na, LI Jun. Development and current status on performance test and evaluation of thermal protective clothing[J]. Journal of Textile Research, 2015, 36(7): 162-168.
[15] 何佳臻, 薛萧昱, 王敏, 等. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(6): 112-117.
HE Jiazhen, XUE Xiaoyu, WANG Min, et al. Predicting thermal protective performance of clothing based on maximum attenuation factor model[J]. Journal of Textile Research, 2020, 41(6): 112-117.
[16] HE J Z, WANG M, LI J. Determination of the thermal protective performance of clothing during bench-scale fire test and flame engulfment test: evidence from a new index[J]. Journal of Fire Sciences, 2015, 33(3): 218-231.
doi: 10.1177/0734904115581620
[17] ZHU F L, ZHANG W Y. Modeling heat transfer for heat-resistant fabrics considering pyrolysis effect under an external heat flux[J]. Journal of Fire Sciences, 2009, 27(1): 81-96.
doi: 10.1177/0734904108094960
[18] SAWCYN C, TORVI D A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics[J]. Textile Research Journal, 2009, 79(7): 632-644.
doi: 10.1177/0040517508093415
[19] CHITRPHIROMSRI P, KUZNETSOV A V. Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure[J]. Heat and Mass Transfer, 2005, 41(3): 206-215.
[20] ZHU F L, ZHANG W Y. Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model[J]. Journal of Fire Sciences, 2006, 24(6): 465-485.
doi: 10.1177/0734904106062355
[21] SONG G, CHITRPHIROMSRI P, DING D. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions[J]. International Journal of Occupational Safety and Ergonomics, 2008, 14(1): 89-106.
pmid: 18394330
[22] AMP A G, BERGSTROMA D J. Numerical simulation of transient heat transfer in a protective clothing system during a flash fire exposure[J]. Numerical Heat Transfer, 2010, 58(9): 702-724.
[23] GHAZY A, BERGSTROM D J. Influence of the air gap between protective clothing and skin on clothing performance during flash fire exposure[J]. Heat & Mass Transfer, 2011, 47(10): 1275-1288.
[24] GHAZY A, BERGSTROM D J. Numerical simulation of the influence of fabric's motion on protective clothing performance during flash fire exposure[J]. Heat & Mass Transfer, 2013, 49(6): 775-788.
[25] ONOFREI E, PETRUSIC S, BEDEK G, et al. Study of heat transfer through multilayer protective clothing at low-level thermal radiation[J]. Journal of Industrial Textiles, 2014, 45(2): 222-238.
doi: 10.1177/1528083714529805
[26] FU M, YUAN M Q, WENG W G. Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation[J]. International Journal of Thermal Sciences, 2015, 96:201-210.
doi: 10.1016/j.ijthermalsci.2015.05.008
[27] SU Y, HE J, LI J. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure[J]. Applied Thermal Engineering, 2016, 93:1295-1303.
doi: 10.1016/j.applthermaleng.2015.10.089
[28] SU Y, HE J, LI J. An improved model to analyze radiative heat transfer in flame-resistant fabrics exposed to low-level radiation[J]. Textile Research Journal, 2016, 87(16): 1953-1967.
doi: 10.1177/0040517516660892
[29] SU Y, HE J, LI J. A model of heat transfer in firefighting protective clothing during compression after radiant heat exposure[J]. Journal of Industrial Textiles, 2016, 47(8): 2128-2152.
doi: 10.1177/1528083716644289
[30] SU Y, RUI L, SONG G, et al. Modeling steam heat transfer in thermal protective clothing under hot steam exposure[J]. International Journal of Heat and Mass Transfer, 2018, 120(5): 818-829.
doi: 10.1016/j.ijheatmasstransfer.2017.12.074
[31] GUOWEN S, PASKALUK S, SATI R, et all. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal, 2010, 81(3): 311-323.
doi: 10.1177/0040517510380108
[32] GHAZY A. The thermal protective performance of firefighters' clothing: the air gap between the clothing and the body[J]. Heat Transfer Engineering, 2017, 38(9-12): 975-986.
doi: 10.1080/01457632.2016.1212583
[33] AHMED G. Influence of thermal shrinkage on protective clothing performance during fire exposure: numerical investigation[J]. Mechanical Engineering Research, 2014, 4(2):1-15.
[34] LAPKA P, FURMA ŃSKI P, WISNIEWSKI T S.Numerical modelling of transient heat and moisture transport in protective clothing [J]. Journal of Physics Conference, 2016. DOI: 10.1088/1742-6596/676/1/012014.
doi: 10.1088/1742-6596/676/1/012014
[35] 张昭华, 王云仪, 李俊. 衣下空气层厚度对着装人体热传递的影响[J]. 纺织学报, 2010, 31(12): 103-107.
ZHANG Zhaohua, WANG Yunyi, LI Jun. Effect of thickness of air layer under clothing on heat transmission of wearer[J]. Journal of Textile Research, 2010, 31(12): 103-107.
[36] 赖军, 张梦莹, 张华, 等. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(6): 151-156.
LAI Jun, ZHANG Mengying, ZHANG Hua, et al. Research progress on air gap entrapped in firefighters'protective clothing and its measurement methods[J]. Journal of Textile Research, 2017, 38(6): 151-156.
[37] FU M, WENG W, YUAN H. Effects of multiple air gaps on the thermal performance of firefighter protective clothing under low-level heat exposure[J]. Textile Research Journal, 2014, 84(9): 968-978.
doi: 10.1177/0040517513512403
[38] ENI E U. Developing test procedures for measuring stored thermal energy in firefighter protective clothing[D]. North Carolina: North Carolina State University, 2005:1-53.
[39] 何华玲, 于志财, 张健飞, 等. 含水率对消防服用多层织物系统热蓄积的影响[J]. 纺织学报, 2017, 38(8): 108-113.
HE Hualing, YU Zhicai, ZHANG Jianfei, et al. Influence of moisture content on heat storage performance of multilayer fabric assemblies for firefighters[J]. Journal of Textile Research, 2017, 38(8): 108-113.
[40] MANDAL S, SONG G, ACKERMAN M, et al. Characterization of textile fabrics under various thermal exposures[J]. Textile Research Journal, 2013, 83(10): 1005-1019.
doi: 10.1177/0040517512461707
[41] 华涛. 热防护服热防护性能的分析与探讨[J]. 产业用纺织品, 2002, 20(8): 28-31.
HUA Tao. Analysis of thermal protective performance of thermal protective clothing[J]. Technical Textiles, 2002, 20(8): 28-31.
[42] HE J, LI J. Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time[J]. Textile Research Journal, 2016, 86(3): 235-244.
doi: 10.1177/0040517515588272
[43] BARKER R L, GUERTH C, BEHNKE W P, et al. Measuring the thermal energy stored in firefighter protective clothing[J]. ASTM Special Technical Publication, 2000, 1386:33-44.
[44] SU Y, HE J, LI J. Numerical simulation of heat transfer in protective clothing with various heat exposure distances[J]. Journal of The Textile Institute, 2017, 108(8):1412-1420.
doi: 10.1080/00405000.2016.1254591
[45] HE J Z, LU Y H, CHEN Y, et al. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge[J]. Journal of Hazardous Materials, 2017, 338: 76-84.
doi: S0304-3894(17)30355-2 pmid: 28531661
[46] HE J, LU Y, YANG J. Quantification of the energy storage caused dual performance of thermal protective clothing containing with moisture exposed to hot steam[J]. Energy Science & Engineering, 2019, 7(6): 2585-2595.
[47] HE J Z, LU Y H, CHEN S, et al. On dual performance of protective clothing composites with different air gaps under hot steam exposure[J]. Case Studies in Thermal Engineering, 2021. DOI: 10.1016/j.csite.2021.101128.
doi: 10.1016/j.csite.2021.101128
[48] SU Y, ZHU W, TIAN M, et al. Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing[J]. Applied Thermal Engineering, 2020. DOI: 10.1016/j.opplther maleng.2020.115340.
doi: 10.1016/j.opplther maleng.2020.115340
[49] BARKER R L. A review of gaps and limitations in test methods for first responder protective clothing and equipment[R]. North Carolina: National Personal Protection Technology Laboratory, 2005:8-13.
[50] SHALEV I, BARKER R L. Protective fabrics: a comparison of laboratory methods for evaluating thermal protective performance in convective/radiant exposures[J]. Textile Research Journal, 1984, 54(10): 648-654.
doi: 10.1177/004051758405401003
[51] HE J, LI J. Quantitatively assessing the effect of exposure time and cooling time of fabric assemblies representative of those used in firefighter clothing on the thermal protection[J]. Fire and Materials, 2016, 40(6): 773-784.
doi: 10.1002/fam.2341
[52] 邓梦, 王云仪, 田苗. 消防服的老化降解及安全使用寿命预测[J]. 上海纺织科技, 2019, 19(10): 21-27.
DENG Meng, WANG Yunyi, TIAN Miao. Research of aging and degradation of the firefighters' protective clothing and lifetime prediction[J]. Shanghai Textile Science & Technology, 2019, 19(10): 21-27.
[53] JASON A, STEVEN C, DEAN C, et al. Thermal capacity of fire fighter protective clothing[R]. Quincy: Fire Protection Research Foundation, 2008:1-33.
[54] 王莹. 多次闪火作用下织物及服装的热收缩与热防护性能研究[D]. 上海: 东华大学, 2016:14-28.
WANG Ying. Research on thermal shrinkage and thermal protective performance of fabric and clothing after repeated flash fire exposure[D]. Shanghai: Donghua University, 2016:14-28.
[55] WANG M, LI J. Thermal protection retention of fire protective clothing after repeated flash fire exposure[J]. Journal of Industrial Textiles, 2016, 46(3): 737-755.
doi: 10.1177/1528083715594977
[56] LI J, LI X H, LU Y H, et al. A new approach to characterize the effect of fabric deformation on thermal protective performance[J]. Measurement Science and Technology, 2012. DOI: 10.1088/0957-0233/23/4/045601.
doi: 10.1088/0957-0233/23/4/045601
[57] 卢业虎, 戴晓群. 基于双向拉伸法的织物泊松比测定[J]. 纺织学报, 2009, 30(9): 25-28.
LU Yehu, DAI Xiaoqun. Calculation of fabrics Poisson ratio based on biaxial extension[J]. Journal of Textile Research, 2009, 30(9): 25-28.
[58] NAZARÉ S, MADRZYKOWSKI D, NAZARE S. A review of test methods for determining protective capabilities of fire fighter protective clothing from steam[M]. Gaithersburg: National Institute of Standards and Technology, 2015:1-28.
[59] BARKER R L. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures[J]. Textile Research Journal, 2006, 76(1): 27-31.
doi: 10.1177/0040517506053947
[60] 李娜, 邓梦, 王云仪. 防火服用织物的蓄热机理及其作用机制研究进展[J]. 纺织导报, 2020, 39(11): 71-75.
LI Na, DENG Meng, WANG Yunyi. Research progress on heat-storing property and related impact mechanism of flame-retardant fabrics[J]. China Textile Leader, 2020, 39(11): 71-75.
[61] SU Y, LI J, SONG G. The effect of moisture content within multilayer protective clothing on protection from radiation and steam[J]. International Journal of Occupational Safety & Ergonomics, 2018, 24(2): 190-199.
[62] SONG G, CAO W, GHOLAMREZA F. Analyzing stored thermal energy and thermal protective performance of clothing[J]. Textile Research Journal, 2011, 81(11): 1124-1138.
doi: 10.1177/0040517511398943
[1] DAI Lu, HU Zexu, WANG Yan, ZHOU Zhe, ZHANG Fan, ZHU Meifang. Combustion and charring behavior of polyphenylene sulfide/graphene nanocomposite fibers [J]. Journal of Textile Research, 2023, 44(01): 71-78.
[2] GUO Jing, ZHOU Qianwen, HE Jiazhen. Study on heat-storage and heat-release of thermal protective fabrics under deformation [J]. Journal of Textile Research, 2022, 43(07): 67-74.
[3] ZHU Xiaorong, HE Jiazhen, WANG Min. Application research progress in phase change materials for thermal protective clothing [J]. Journal of Textile Research, 2022, 43(04): 194-202.
[4] ZHENG Qing, WANG Zhaojie, WANG Hongbo, WANG Min, KE Ying. Development and performance evaluation of thermal protective clothing for moped cycling [J]. Journal of Textile Research, 2021, 42(07): 158-163.
[5] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[6] ZHAI Li'na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[7] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[8] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[9] HOU Yuying, LI Xiaohui. Evaluation of thermal storage performance of honeycomb insulation layer for fireproof clothing [J]. Journal of Textile Research, 2019, 40(12): 109-113.
[10] CHEN Si, LU Yehu. Influence of air gap size on steam protective performance of fireproof fabric [J]. Journal of Textile Research, 2019, 40(10): 141-146.
[11] ZHANG Hongyue, LI Xiaohui. Evaluation on radiation thermal performance of honeycomb sandwich structure of thermal protective clothing fabrics [J]. Journal of Textile Research, 2019, 40(10): 147-151.
[12] SU Yun, YANG Jie, LI Rui, SONG Guowen, LI Jun, ZHANG Xianghui. Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation [J]. Journal of Textile Research, 2019, 40(02): 147-152.
[13] . Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 111-118.
[14] . Devilopment and current status on performance test and evaluation of thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(07): 162-168.
[15] LU Ye-Hu, LI Jun, WANG Yun-Yi. Development of heat and moisture transfer model in thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(1): 151-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!