Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (01): 228-237.doi: 10.13475/j.fzxb.20210702510
• Comprehensive Review • Previous Articles Next Articles
ZHU Xiaorong1, HE Jiazhen1,2(), XIANG Youhui1, WANG Min2
CLC Number:
[1] | MANDAL S, SONG G, ROSSI R. Thermal protective clothing for firefighters[M]. Cambridge: Woodhead Publishing, 2017:27-55. |
[2] |
LI J, LU Y H, LI X. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fires[J]. Textile Research Journal, 2012, 82(12):1235-1243.
doi: 10.1177/0040517512436830 |
[3] | WANG Y Y, LU Y H, LI J, et al. Effects of air gap entrapped in multilayer fabrics and moisture on thermal protective performance[J]. Fibers & Polymers, 2012, 13(5): 647-652. |
[4] | LAWSON J R. Firefighters' protective clothing and thermal environments of structural firefighting[J]. Performance of Protective Clothing, 1997, 1273(6):335-352. |
[5] |
HOSCHKE B N. Standard and specifications for firefighters' clothing[J]. Fire Safety Journal, 1981, 4(2): 125-137.
doi: 10.1016/0379-7112(81)90011-4 |
[6] |
TORVI D A, THRELFALL T G. Heat transfer model of flame resistant fabrics during cooling after exposure to fire[J]. Fire Technology, 2006, 42(1): 27-48.
doi: 10.1007/s10694-005-3733-8 |
[7] |
HE J Z, CHEN Y, WANG L C, et al. Quantitative assessment of the thermal stored energy in protective clothing under low-level radiant heat exposure[J]. Textile Research Journal, 2018, 88(24):2867-2879.
doi: 10.1177/0040517517732084 |
[8] |
SONG G, WEI C, GHOLAMREZA F. Analyzing stored thermal energy and thermal protective performance of clothing[J]. Textile Research Journal, 2011, 81(11): 1124-1138.
doi: 10.1177/0040517511398943 |
[9] | KAHN S A, PATEL J H, LENTZ C W, et al. Firefighter burn injuries: predictable patterns influenced by turnout gear[J]. Journal of Burn Care & Research, 2012, 33(1): 152-156. |
[10] |
TECHNOLOGY F. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999, 35(3): 210-231.
doi: 10.1023/A:1015484426361 |
[11] | 张梦莹, 苗勇, 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016, 37(6): 171-176. |
ZHANG Mengying, MIAO Yong, LI Jun. Influence factors and evaluation methods of stored thermal energy in firefighters protective clothing[J]. Journal of Textile Research, 2016, 37(6): 171-176. | |
[12] |
SONG G, BARKER R L, HAMOUDA H, et al. Modeling the thermal protective performance of heat resistant garments in flash fire exposures[J]. Textile Research Journal, 2004, 74(12): 1033-1040.
doi: 10.1177/004051750407401201 |
[13] |
BARKER R L, DEATON A S, ROSS K A. Heat transmission and thermal energy storage in firefighter turnout suit materials[J]. Fire Technology, 2011, 47(3): 549-563.
doi: 10.1007/s10694-010-0151-3 |
[14] | 翟丽娜, 李俊. 服装热防护性能测评技术的发展过程及现状[J]. 纺织学报, 2015, 36(7): 162-168. |
ZHAI Li'na, LI Jun. Development and current status on performance test and evaluation of thermal protective clothing[J]. Journal of Textile Research, 2015, 36(7): 162-168. | |
[15] | 何佳臻, 薛萧昱, 王敏, 等. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(6): 112-117. |
HE Jiazhen, XUE Xiaoyu, WANG Min, et al. Predicting thermal protective performance of clothing based on maximum attenuation factor model[J]. Journal of Textile Research, 2020, 41(6): 112-117. | |
[16] |
HE J Z, WANG M, LI J. Determination of the thermal protective performance of clothing during bench-scale fire test and flame engulfment test: evidence from a new index[J]. Journal of Fire Sciences, 2015, 33(3): 218-231.
doi: 10.1177/0734904115581620 |
[17] |
ZHU F L, ZHANG W Y. Modeling heat transfer for heat-resistant fabrics considering pyrolysis effect under an external heat flux[J]. Journal of Fire Sciences, 2009, 27(1): 81-96.
doi: 10.1177/0734904108094960 |
[18] |
SAWCYN C, TORVI D A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics[J]. Textile Research Journal, 2009, 79(7): 632-644.
doi: 10.1177/0040517508093415 |
[19] | CHITRPHIROMSRI P, KUZNETSOV A V. Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure[J]. Heat and Mass Transfer, 2005, 41(3): 206-215. |
[20] |
ZHU F L, ZHANG W Y. Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model[J]. Journal of Fire Sciences, 2006, 24(6): 465-485.
doi: 10.1177/0734904106062355 |
[21] |
SONG G, CHITRPHIROMSRI P, DING D. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions[J]. International Journal of Occupational Safety and Ergonomics, 2008, 14(1): 89-106.
pmid: 18394330 |
[22] | AMP A G, BERGSTROMA D J. Numerical simulation of transient heat transfer in a protective clothing system during a flash fire exposure[J]. Numerical Heat Transfer, 2010, 58(9): 702-724. |
[23] | GHAZY A, BERGSTROM D J. Influence of the air gap between protective clothing and skin on clothing performance during flash fire exposure[J]. Heat & Mass Transfer, 2011, 47(10): 1275-1288. |
[24] | GHAZY A, BERGSTROM D J. Numerical simulation of the influence of fabric's motion on protective clothing performance during flash fire exposure[J]. Heat & Mass Transfer, 2013, 49(6): 775-788. |
[25] |
ONOFREI E, PETRUSIC S, BEDEK G, et al. Study of heat transfer through multilayer protective clothing at low-level thermal radiation[J]. Journal of Industrial Textiles, 2014, 45(2): 222-238.
doi: 10.1177/1528083714529805 |
[26] |
FU M, YUAN M Q, WENG W G. Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation[J]. International Journal of Thermal Sciences, 2015, 96:201-210.
doi: 10.1016/j.ijthermalsci.2015.05.008 |
[27] |
SU Y, HE J, LI J. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure[J]. Applied Thermal Engineering, 2016, 93:1295-1303.
doi: 10.1016/j.applthermaleng.2015.10.089 |
[28] |
SU Y, HE J, LI J. An improved model to analyze radiative heat transfer in flame-resistant fabrics exposed to low-level radiation[J]. Textile Research Journal, 2016, 87(16): 1953-1967.
doi: 10.1177/0040517516660892 |
[29] |
SU Y, HE J, LI J. A model of heat transfer in firefighting protective clothing during compression after radiant heat exposure[J]. Journal of Industrial Textiles, 2016, 47(8): 2128-2152.
doi: 10.1177/1528083716644289 |
[30] |
SU Y, RUI L, SONG G, et al. Modeling steam heat transfer in thermal protective clothing under hot steam exposure[J]. International Journal of Heat and Mass Transfer, 2018, 120(5): 818-829.
doi: 10.1016/j.ijheatmasstransfer.2017.12.074 |
[31] |
GUOWEN S, PASKALUK S, SATI R, et all. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal, 2010, 81(3): 311-323.
doi: 10.1177/0040517510380108 |
[32] |
GHAZY A. The thermal protective performance of firefighters' clothing: the air gap between the clothing and the body[J]. Heat Transfer Engineering, 2017, 38(9-12): 975-986.
doi: 10.1080/01457632.2016.1212583 |
[33] | AHMED G. Influence of thermal shrinkage on protective clothing performance during fire exposure: numerical investigation[J]. Mechanical Engineering Research, 2014, 4(2):1-15. |
[34] |
LAPKA P, FURMA ŃSKI P, WISNIEWSKI T S.Numerical modelling of transient heat and moisture transport in protective clothing [J]. Journal of Physics Conference, 2016. DOI: 10.1088/1742-6596/676/1/012014.
doi: 10.1088/1742-6596/676/1/012014 |
[35] | 张昭华, 王云仪, 李俊. 衣下空气层厚度对着装人体热传递的影响[J]. 纺织学报, 2010, 31(12): 103-107. |
ZHANG Zhaohua, WANG Yunyi, LI Jun. Effect of thickness of air layer under clothing on heat transmission of wearer[J]. Journal of Textile Research, 2010, 31(12): 103-107. | |
[36] | 赖军, 张梦莹, 张华, 等. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(6): 151-156. |
LAI Jun, ZHANG Mengying, ZHANG Hua, et al. Research progress on air gap entrapped in firefighters'protective clothing and its measurement methods[J]. Journal of Textile Research, 2017, 38(6): 151-156. | |
[37] |
FU M, WENG W, YUAN H. Effects of multiple air gaps on the thermal performance of firefighter protective clothing under low-level heat exposure[J]. Textile Research Journal, 2014, 84(9): 968-978.
doi: 10.1177/0040517513512403 |
[38] | ENI E U. Developing test procedures for measuring stored thermal energy in firefighter protective clothing[D]. North Carolina: North Carolina State University, 2005:1-53. |
[39] | 何华玲, 于志财, 张健飞, 等. 含水率对消防服用多层织物系统热蓄积的影响[J]. 纺织学报, 2017, 38(8): 108-113. |
HE Hualing, YU Zhicai, ZHANG Jianfei, et al. Influence of moisture content on heat storage performance of multilayer fabric assemblies for firefighters[J]. Journal of Textile Research, 2017, 38(8): 108-113. | |
[40] |
MANDAL S, SONG G, ACKERMAN M, et al. Characterization of textile fabrics under various thermal exposures[J]. Textile Research Journal, 2013, 83(10): 1005-1019.
doi: 10.1177/0040517512461707 |
[41] | 华涛. 热防护服热防护性能的分析与探讨[J]. 产业用纺织品, 2002, 20(8): 28-31. |
HUA Tao. Analysis of thermal protective performance of thermal protective clothing[J]. Technical Textiles, 2002, 20(8): 28-31. | |
[42] |
HE J, LI J. Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time[J]. Textile Research Journal, 2016, 86(3): 235-244.
doi: 10.1177/0040517515588272 |
[43] | BARKER R L, GUERTH C, BEHNKE W P, et al. Measuring the thermal energy stored in firefighter protective clothing[J]. ASTM Special Technical Publication, 2000, 1386:33-44. |
[44] |
SU Y, HE J, LI J. Numerical simulation of heat transfer in protective clothing with various heat exposure distances[J]. Journal of The Textile Institute, 2017, 108(8):1412-1420.
doi: 10.1080/00405000.2016.1254591 |
[45] |
HE J Z, LU Y H, CHEN Y, et al. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge[J]. Journal of Hazardous Materials, 2017, 338: 76-84.
doi: S0304-3894(17)30355-2 pmid: 28531661 |
[46] | HE J, LU Y, YANG J. Quantification of the energy storage caused dual performance of thermal protective clothing containing with moisture exposed to hot steam[J]. Energy Science & Engineering, 2019, 7(6): 2585-2595. |
[47] |
HE J Z, LU Y H, CHEN S, et al. On dual performance of protective clothing composites with different air gaps under hot steam exposure[J]. Case Studies in Thermal Engineering, 2021. DOI: 10.1016/j.csite.2021.101128.
doi: 10.1016/j.csite.2021.101128 |
[48] |
SU Y, ZHU W, TIAN M, et al. Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing[J]. Applied Thermal Engineering, 2020. DOI: 10.1016/j.opplther maleng.2020.115340.
doi: 10.1016/j.opplther maleng.2020.115340 |
[49] | BARKER R L. A review of gaps and limitations in test methods for first responder protective clothing and equipment[R]. North Carolina: National Personal Protection Technology Laboratory, 2005:8-13. |
[50] |
SHALEV I, BARKER R L. Protective fabrics: a comparison of laboratory methods for evaluating thermal protective performance in convective/radiant exposures[J]. Textile Research Journal, 1984, 54(10): 648-654.
doi: 10.1177/004051758405401003 |
[51] |
HE J, LI J. Quantitatively assessing the effect of exposure time and cooling time of fabric assemblies representative of those used in firefighter clothing on the thermal protection[J]. Fire and Materials, 2016, 40(6): 773-784.
doi: 10.1002/fam.2341 |
[52] | 邓梦, 王云仪, 田苗. 消防服的老化降解及安全使用寿命预测[J]. 上海纺织科技, 2019, 19(10): 21-27. |
DENG Meng, WANG Yunyi, TIAN Miao. Research of aging and degradation of the firefighters' protective clothing and lifetime prediction[J]. Shanghai Textile Science & Technology, 2019, 19(10): 21-27. | |
[53] | JASON A, STEVEN C, DEAN C, et al. Thermal capacity of fire fighter protective clothing[R]. Quincy: Fire Protection Research Foundation, 2008:1-33. |
[54] | 王莹. 多次闪火作用下织物及服装的热收缩与热防护性能研究[D]. 上海: 东华大学, 2016:14-28. |
WANG Ying. Research on thermal shrinkage and thermal protective performance of fabric and clothing after repeated flash fire exposure[D]. Shanghai: Donghua University, 2016:14-28. | |
[55] |
WANG M, LI J. Thermal protection retention of fire protective clothing after repeated flash fire exposure[J]. Journal of Industrial Textiles, 2016, 46(3): 737-755.
doi: 10.1177/1528083715594977 |
[56] |
LI J, LI X H, LU Y H, et al. A new approach to characterize the effect of fabric deformation on thermal protective performance[J]. Measurement Science and Technology, 2012. DOI: 10.1088/0957-0233/23/4/045601.
doi: 10.1088/0957-0233/23/4/045601 |
[57] | 卢业虎, 戴晓群. 基于双向拉伸法的织物泊松比测定[J]. 纺织学报, 2009, 30(9): 25-28. |
LU Yehu, DAI Xiaoqun. Calculation of fabrics Poisson ratio based on biaxial extension[J]. Journal of Textile Research, 2009, 30(9): 25-28. | |
[58] | NAZARÉ S, MADRZYKOWSKI D, NAZARE S. A review of test methods for determining protective capabilities of fire fighter protective clothing from steam[M]. Gaithersburg: National Institute of Standards and Technology, 2015:1-28. |
[59] |
BARKER R L. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures[J]. Textile Research Journal, 2006, 76(1): 27-31.
doi: 10.1177/0040517506053947 |
[60] | 李娜, 邓梦, 王云仪. 防火服用织物的蓄热机理及其作用机制研究进展[J]. 纺织导报, 2020, 39(11): 71-75. |
LI Na, DENG Meng, WANG Yunyi. Research progress on heat-storing property and related impact mechanism of flame-retardant fabrics[J]. China Textile Leader, 2020, 39(11): 71-75. | |
[61] | SU Y, LI J, SONG G. The effect of moisture content within multilayer protective clothing on protection from radiation and steam[J]. International Journal of Occupational Safety & Ergonomics, 2018, 24(2): 190-199. |
[62] |
SONG G, CAO W, GHOLAMREZA F. Analyzing stored thermal energy and thermal protective performance of clothing[J]. Textile Research Journal, 2011, 81(11): 1124-1138.
doi: 10.1177/0040517511398943 |
|