Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 60-66.doi: 10.13475/j.fzxb.20210702607
• Textile Engineering • Previous Articles Next Articles
LIU Jiao, CHEN Shaojuan, WU Shaohua()
CLC Number:
[1] |
VASILIADIS Angelo V, KATAKASLOS Konstantinos. The role of scaffolds in tendon tissue engineering[J]. J Funct Biomater, 2020. DOI: 10.3390/jfb11040078.
doi: 10.3390/jfb11040078 |
[2] |
XU Tianpeng, BAI Jiaxiang, XU Menglei, et al. Relaxin inhibits patellar tendon healing in rats: a histological and biochemical evaluation[J]. BMC Musculoskelet Disord, 2019. DOI: 10.1186/s12891-019-2729-3.
doi: 10.1186/s12891-019-2729-3 |
[3] |
GAUT Ludovic, DUPREZ Delphine. Tendon development and diseases[J]. Wiley Interdiscip Rev Dev Biol, 2016, 5(1): 5-23.
doi: 10.1002/wdev.201 |
[4] |
SNEDEKER Jess G, FOOLEN Jasper. Tendon injury and repair: a perspective on the basic mechanisms of tendon disease and future clinical therapy[J]. Acta Biomater, 2017, 63: 18-36.
doi: 10.1016/j.actbio.2017.08.032 |
[5] |
WU Shaohua, PENG Hao, LI Xiehong, et al. Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L-lactic acid) fibrous meshes[J]. Biofabrication, 2017. DOI: 10.1088/1758-5090/aa8fb8.
doi: 10.1088/1758-5090/aa8fb8 |
[6] |
JIAO Yongjie, LI Chaojing, LIU Laijun, et al. Construction and application of textile-based tissue engineering scaffolds: a review[J]. Biomater Sci, 2020, 8(13): 3574-3600.
doi: 10.1039/D0BM00157K |
[7] |
ALMEIDA L R, MARTINS A R, FERNANDES E M, et al. New biotextiles for tissue engineering: development, characterization and in vitro cellular viability[J]. Acta Biomater, 2013, 9(9): 8167-8181.
doi: 10.1016/j.actbio.2013.05.019 |
[8] |
WU Shaohua, WANG Ying, STREUBEL Philipp N, et al. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation[J]. Acta Biomater, 2017, 62: 102-115.
doi: S1742-7061(17)30557-3 pmid: 28864251 |
[9] |
WU Shaohua, DUAN Bin, LIU Penghong, et al. Fabrication of aligned nanofiber polymer yarn networks for anisotropic soft tissue scaffolds[J]. ACS Appl Mater Interfaces, 2016, 8(26): 16950-16960.
doi: 10.1021/acsami.6b05199 |
[10] |
WU Shaohua, ZHOU Rong, ZHOU Fang, et al. Electrospun thymosin Beta-4 loaded PLGA/PLA nanofiber/microfiber hybrid yarns for tendon tissue engineering application[J]. Mater Sci Eng C Mater Biol Appl, 2020. DOI: 10.1016/j.msec.2019.110268.
doi: 10.1016/j.msec.2019.110268 |
[11] |
WU Shaohua, LIU Jiao, QI Ye, et al. Tendon-bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2021. DOI: 10.1016/j.msec.2021.112181.
doi: 10.1016/j.msec.2021.112181 |
[12] |
MIRANDA Catarina S, RIBEIRO Ana R M, HOMEM Natalia C, et al. Spun biotextiles in tissue engineering and biomolecules delivery systems[J]. Antibiotics (Basel), 2020. DOI: 10.3390/antibiotics9040174.
doi: 10.3390/antibiotics9040174 |
[13] |
LIU Jiao, ZHAI Huiyuan, SUN Yaning, et al. Developing high strength poly(L-lactic acid) nanofiber yarns for biomedical textile materials: a comparative study of novel nanofiber yarns and traditional microfiber yarns[J]. Materials Letters, 2021. DOI: 0.1016/j.matlet.2021.130229.
doi: 0.1016/j.matlet.2021.130229 |
[14] |
MALEKI H, GHAREHAGHAJI A A, TOLIYAT T, et al. Drug release behavior of electrospun twisted yarns as implantable medical devices[J]. Biofabrication, 2016. DOI: 10.1088/1758-5090/8/3/035019.
doi: 10.1088/1758-5090/8/3/035019 |
[15] |
PARK Koeun, JUNG Sungyoun, LEE Seungjin J, et al. Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers[J]. Int J Biol Macromol, 2006, 38(3-5): 165-173.
doi: 10.1016/j.ijbiomac.2006.03.003 |
[16] |
LIU Weiwei, LI Zhengqiang, ZHENG Lu, et al. Electrospun fibrous silk fibroin/poly(L-lactic acid) scaffold for cartilage tissue engineering[J]. Tissue Eng Regen Med, 2016, 13(5): 516-526.
doi: 10.1007/s13770-016-9099-9 pmid: 30603432 |
[17] |
LI Jingqing, XIAO Peitao, LI Hongfei, et al. Crystalline structures and crystallization behaviors of poly(L-lactide) in poly(L-lactide)/graphene nanosheet composites[J]. Polymer Chemistry, 2015, 6(21): 3988-4002.
doi: 10.1039/C5PY00254K |
[18] |
ANDROSCH R, SCHICK C, DILORENZO M L. Melting of conformationally disordered crystals (α'-Phase) of poly(L-lactic acid)[J]. Macromolecular Chemistry and Physics, 2014, 215(11): 1134-1139.
doi: 10.1002/macp.201400126 |
[19] |
WANG Fang, LI Yingying, GOUGH Christopher R, et al. Dual-crystallizable silk fibroin/poly(L-lactic acid) biocomposite films: effect of polymer phases on protein structures in protein-polymer blends[J]. Int J Mol Sci, 2021. DOI: 10.3390/ijms22041871.
doi: 10.3390/ijms22041871 |
[1] | LI Aiyuan, SHI Xinyu, YUE Wanfu, YOU Weiyun. Preparation and property of silk fibroin based hydrogel scaffolds [J]. Journal of Textile Research, 2022, 43(06): 44-48. |
[2] | GU Zhanghong, YAO Xiang, WANG Jinsi, ZHANG Yaopeng. Preparation and properties of single-layer and parallel silk fibroin fiber patterns with cell adhesion contrast properties [J]. Journal of Textile Research, 2022, 43(05): 1-6. |
[3] | LEI Caihong, YU Linshuang, ZHU Hailin, ZHENG Tao, CHEN Jianyong. Hemostasis properties of silk fibroin materials under different types of hydrolysis [J]. Journal of Textile Research, 2022, 43(04): 15-19. |
[4] | QIAO Yansha, MAO Ying, XU Danyao, LI Yan, LI Shaojie, WANG Lu, TANG Jianxiong. Research progress in warp-knitted meshes for tackling complications after hernia repair [J]. Journal of Textile Research, 2022, 43(03): 1-7. |
[5] | LI Tianhua, LI Jingjing, ZHANG Keqin, ZHAO Huijing, MENG Kai. Numerical simulation of hemodynamics in spiral artificial blood vessel [J]. Journal of Textile Research, 2022, 43(03): 17-23. |
[6] | FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43. |
[7] | ZHANG Tao, WANG Fuping, CHEN Guobao, WU Jiyu, PANG Yani, CHEN Zhongmin. Preparation and performance of chitosan-based antibacterial gel [J]. Journal of Textile Research, 2022, 43(03): 71-77. |
[8] | WU Yang, LIU Fangtian, CAO Mengjie, CUI Jinhai, DENG Hongbing. Progress in biomass fiber medical dressings [J]. Journal of Textile Research, 2022, 43(03): 8-16. |
[9] | YAO Ruotong, ZHAO Jingyuan, YAN Yixin, DUAN Lirong, WANG Tian, YAN Jia, ZHANG Shujun, LI Gang. Fabrication of novel biodegradable braided nerve grafts for nerve regeneration [J]. Journal of Textile Research, 2022, 43(02): 125-131. |
[10] | JIANG Yulin, WANG Hui, ZHANG Keqin. Research progress of silk fibroin-based hydrogel bioinks for 3D bio-printing [J]. Journal of Textile Research, 2021, 42(11): 1-8. |
[11] | LU Jun, GUAN Xiaoning, LIN Jing, LAO Jihong, WANG Fujun, LI Yan, WANG Lu. Design of fatigue testing device and fatigue resistance evaluation of artificial ligaments [J]. Journal of Textile Research, 2021, 42(11): 71-76. |
[12] | SUN Yusheng, ZUO Baoqi. Research progress of high-molecular polymer material for bone defect repair [J]. Journal of Textile Research, 2021, 42(08): 175-184. |
[13] | LIU Hao, LU Minglei, HUANG Xiaowei, WANG Na, WANG Xuefang, NING Xin, MING Jinfa. Preparation and characterization of silk fibroin hydrogel in acid-alcohol system [J]. Journal of Textile Research, 2021, 42(08): 41-48. |
[14] | LU Jun, WANG Fujun, LAO Jihong, WANG Lu, LIN Jing. Finite element analysis of braided artificial ligaments of different structures under combined loading [J]. Journal of Textile Research, 2021, 42(08): 84-89. |
[15] | DING Mengyao, DAI Mengnan, LI Meng, LIU Ping, XU Jingjing, WANG Jiannan. Separation and characterization of silk fibroin with different molecular weight [J]. Journal of Textile Research, 2021, 42(07): 46-53. |
|