Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 140-148.doi: 10.13475/j.fzxb.20210702709

• Dyeing and Finshing & Chemicals • Previous Articles     Next Articles

Efficient separation of polyester and cotton from waste blended fabrics with dilute oxalic acid solution

SHI Sheng1,2,3, WANG Yan1,2, LI Fei2,4, TANG Jiandong2,3, GAO Xiangyu4, HOU Wensheng1,2, GUO Hong1,2(), WANG Shuhua1,2, JI Jiaqi1,2   

  1. 1. College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
    2. Key Laboratory of Waste Polyester Cotton Textiles for Cleaning and Regeneration in Textile Industry, Jinzhong, Shanxi 030600, China
    3. Jihua 3542 Textile Co., Ltd., Xiangyang, Hubei 441000, China
    4. Anhui Tianzhu Textile Science Technology Co., Ltd., Fuyang, Anhui 236000, China
  • Received:2021-07-07 Revised:2021-12-03 Online:2022-02-15 Published:2022-03-15
  • Contact: GUO Hong E-mail:guo_hong_2012@163.com

Abstract:

In view of the problem that tightly twisted polyester and cotton fibers in blended yarns are difficult to separate and hence unable to be processed in the recycling of waste textiles, an environmentally friendly oxalic acid system was used to selectively hydrolyze the cotton fiber of blended fabric hence releasing the polyester fiber to achieve effective separation. The conditions of oxalic acid treatment were further optimized. The results show that oxalic acid can achieve the same separation effect as hydrochloric acid under the same reaction conditions, and the morphology of polyester fiber is more complete, the hydrolysis degree of cotton fiber is lower and the distribution of hydrolysate is narrower. When the oxalic acid concentration is 0.07 mol/L, the reaction temperature is 130 ℃ and the reaction time is 3 h, the separation effect of polyester and cotton in the blended fabric reach the best level, where the yield of cotton fiber hydrolyzed into cellulose reaches 91.46%, with a small part being hydrolyzed into glucose or other oligosaccharides. The recovery ratio of polyester fiber is as high as 99.28%, retaining the original physical and chemical properties, which can be directly processed for textile production. The reaction system can be used for many times, facilitating the high efficiency and comprehensive utilization of waste polyester/cotton blended fabrics.

Key words: separation of waste polyester/cotton fabric, oxalic acid, selective hydrolysis, recycling

CLC Number: 

  • TS102.9

Tab.1

Different reaction conditions of separation process of oxalic acid system"


草酸浓度/
(mol·L-1)
反应温
度/℃
反应时
间/h

草酸浓度/
(mol·L-1)
反应温
度/℃
反应时
间/h
1# 0.01 150 3 12# 0.49 150 3
2# 0.03 150 3 13# 1.40 150 3
3# 0.05 150 3 14# 0.07 120 3
4# 0.07 150 3 15# 0.07 130 3
5# 0.09 150 3 16# 0.07 140 3
6# 0.11 150 3 17# 0.07 160 3
7# 0.14 150 3 18# 0.07 130 1
8# 0.21 150 3 19# 0.07 130 2
9# 0.28 150 3 20# 0.07 130 4
10# 0.35 150 3 21# 0.07 130 5
11# 0.42 150 3

Fig.1

Comparison of separation effect of waste polyester/cotton blended fabric in hydrochloric acid and oxalic acid system"

Tab.2

Recovery rate of polyester fiber and yield of cellulose obtained under different reaction conditions"

编号 聚酯纤维回
收率/%
纤维素
得率/%
编号 聚酯纤维回
收率/%
纤维素
得率/%
1# * 49.21 12# 98.73 81.01
2# * 84.96 13# 98.73 70.85
3# * 85.99 14# * 77.83
4# 98.92 89.26 15# 99.28 91.46
5# 98.73 87.70 16# 99.04 89.64
6# 98.54 83.57 17# 98.41 76.85
7# 98.33 84.20 18# * 24.80
8# 98.62 82.31 19# * 88.41
9# 98.36 84.54 20# 99.22 88.93
10# 98.69 82.88 21# 99.12 88.11
11# 98.46 82.43

Fig.2

SEM images of waste polyester/cotton blended fabric treated with oxalic acid under different reaction conditions"

Fig.3

SEM images of separated products(×500). (a) Waste polyester/cotton blended fabric; (b) Separated polyester fiber; (c)Separated cellulose"

Fig.4

FT-IR (a) and XRD (b) spectra of original sample and separated polyester fiber"

Fig.5

FT-IR (a) and XRD (b) spectra of cotton fiber and separated cellulose"

Fig.6

Thermogravimetric curves of original sample and separated polyester fiber"

Fig.7

Efficiency diagram of waste polyester/cotton blended fabric separated by oxalic acid system"

[1] MÄÄTTÄNEN Marjo, GUNNARSSON Maria, WEDIN Helena, et al. Pre-treatments of pre-consumer cotton-based textile waste for production of textile fibres in the cold NaOH(aq) and cellulose carbamate processes[J]. Cellulose, 2021, 28(6): 3869-3886.
doi: 10.1007/s10570-021-03753-6
[2] LI Xin, WANG Laili, DING Xuemei. Textile supply chain waste management in China[J]. Journal of Cleaner Production, 2021, 289:125147.
doi: 10.1016/j.jclepro.2020.125147
[3] GUO Zengwei, ERIKSSON Mikael, DE LA MOTTE Hanna, et al. Circular recycling of polyester textile waste using a sustainable catalyst[J]. Journal of Cleaner Production, 2021, 283:124579.
doi: 10.1016/j.jclepro.2020.124579
[4] HUANG Beijia, ZHAO Juan, GENG Yong, et al. Energy-related GHG emissions of the textile industry in China[J]. Resources, Conservation and Recycling, 2017, 119:69-77.
doi: 10.1016/j.resconrec.2016.06.013
[5] DE SILVA Rasike, WANG Xungai, BYRNE Nolene. Recycling textiles: the use of ionic liquids in the separation of cotton polyester blends[J]. RSC Advances, 2014, 4(55): 29094-29098.
doi: 10.1039/C4RA04306E
[6] LING Chen, SHI Sheng, HOU Wensheng, et al. Separation of waste polyester/cotton blended fabrics by phosphotungstic acid and preparation of terephthalic acid[J]. Polymer Degradation and Stability, 2019, 161:157-165.
doi: 10.1016/j.polymdegradstab.2019.01.022
[7] YOUSEF Samy, TATARIANTS Maksym, TICHONOVAS Martynas, et al. Sustainable green technology for recovery of cotton fibers and polyester from textile waste[J]. Journal of Cleaner Production, 2020, 254:120078.
doi: 10.1016/j.jclepro.2020.120078
[8] SUN Xunwen, LU Canhui, ZHANG Wei, et al. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation[J]. Carbohydrate Polymers, 2013, 98(1): 405-411.
doi: 10.1016/j.carbpol.2013.05.089 pmid: 23987361
[9] SUBRAMANIAN Karpagam, CHOPRA Shauhrat S, CAKIN Ezgi, et al. Environmental life cycle assessment of textile bio-recycling-valorizing cotton-polyester textile waste to PET fiber and glucose syrup[J]. Resources Conservation and Recycling, 2020, 161:104989.
doi: 10.1016/j.resconrec.2020.104989
[10] SHEN Fei, XIAO Wenxiong, LIN Lili, et al. Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment[J]. Bioresource Technology, 2013, 130:248-255.
doi: 10.1016/j.biortech.2012.12.025
[11] KUO Chiahung, LIN Poju, LEE Chengkang. Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by gluconacetobacter xylinus[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(10): 1346-1352.
[12] GHOLAMZAD Elahe, KARIMI Keikhosro, MASOOMI Mahmood. Effective conversion of waste polyester-cotton textile to ethanol and recovery of polyester by alkaline pretreatment[J]. Chemical Engineering Journal, 2014, 253:40-45.
doi: 10.1016/j.cej.2014.04.109
[13] JIANG Shuai, XIA Zhaopeng, FAROOQ Amjad, et al. Efficient recovery of the dyed cotton-polyester fabric: cellulose nanocrystal extraction and its application in composite films[J]. Cellulose, 2021, 28(5): 3235-3248.
doi: 10.1007/s10570-021-03738-5
[14] SANCHISSEBASTIÁ Miguel, RUUTH Edvin, STIGSSON Lars, et al. Novel sustainable alternatives for the fashion industry: a method of chemically recycling waste textiles via acid hydrolysis[J]. Waste Management, 2021, 121:248-254.
doi: 10.1016/j.wasman.2020.12.024
[15] OUCHI Akihiko, TOIDA Tatsuo, KUMARESAN Subramanian, et al. A new methodology to recycle polyester from fabric blends with cellulose[J]. Cellulose, 2010, 17(1): 215-222.
doi: 10.1007/s10570-009-9358-1
[16] HOU Wensheng, LING Chen, SHI Sheng, et al. Separation and characterization of waste cotton/polyester blend fabric with hydrothermal method[J]. Fibers and Polymers, 2018, 19(4): 742-750.
doi: 10.1007/s12221-018-7735-9
[17] CHOTIROTSUKON Chayanon, RAITA Marisa, CHAMPREDA Verawat, et al. Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification[J]. Industrial Crops and Products, 2019, 141:111753.
doi: 10.1016/j.indcrop.2019.111753
[18] LEE Jae Won, JEFFRIES Thomas W. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors[J]. Bioresource Technology, 2011, 102(10): 5884-5890.
doi: 10.1016/j.biortech.2011.02.048 pmid: 21377872
[19] LACERDA Talita M, ZARNBON Marcia D, FROLLINI Elisabete. Oxalic acid as a catalyst for the hydrolysis of sisal pulp[J]. Industrial Crops and Products, 2015, 71:163-172.
doi: 10.1016/j.indcrop.2015.03.072
[20] GÜRÜ Metin, BILGESÜ Ali Y, PAMUK Vecihi. Production of oxalic acid from sugar beet molasses by formed nitrogen oxides[J]. Bioresource Technology, 2001, 77(1): 81-6.
doi: 10.1016/S0960-8524(00)00122-X
[21] LU Yulin, MOSIER Nathan S. Biomimetic catalysis for hemicellulose hydrolysis in corn stover[J]. Biotechnology Progress, 2007, 23(1): 116-123.
pmid: 17269678
[22] LI Xun, LI Mingfei, BIAN Jing, et al. Hydrothermal carbonization of bamboo in an oxalic acid solution: effects of acid concentration and retention time on the characteristics of products[J]. RSC Advances, 2015, 5(94): 77147-77153.
doi: 10.1039/C5RA15063A
[23] SEGAL L, CREELY J J, MARTIN J A. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
doi: 10.1177/004051755902901003
[24] SHI Sheng, ZHANG Meiling, ZHANG Suying, et al. Evolution of physicochemical structure of waste cotton fiber (hydrochar) during hydrothermal carbonation[J]. Autex Research Journal, 2020, 20(3): 319-326.
doi: 10.2478/aut-2019-0041
[25] JIANG Yijun, LI Xiutao, WANG Xicheng, et al. Effective saccharification of lignocellulosic biomass over hydrolysis residue derived solid acid under microwave irradiation[J]. Green Chemistry, 2012, 14(8): 2162-2167.
doi: 10.1039/c2gc35306g
[26] QIANG Dandan, ZHANG Meiyun, LI Jinbao, et al. Selective hydrolysis of cellulose for the preparation of microcrystalline cellulose by phosphotungstic acid[J]. Cellulose, 2016, 23(2): 1199-1207.
doi: 10.1007/s10570-016-0858-5
[27] MURTHY N S, CORREALE S T, MINOR H. Structure of the amorphous phase in crystallizable polymers: poly(ethylene terephthalate)[J]. Macromolecules, 1991, 24(5): 1185-1189.
doi: 10.1021/ma00005a033
[28] LU Ping, HSIEH You Lo. Preparation and properties of cellulose nanocrystals: rods, spheres, and network[J]. Carbohydrate Polymers, 2010, 82(2): 329-336.
doi: 10.1016/j.carbpol.2010.04.073
[29] MO Zunli, ZHAO Zhongli, CHEN Hong, et al. Heterogeneous preparation of cellulose-polyaniline conductive composites with cellulose activated by acids and its electrical properties[J]. Carbohydrate Polymers, 2009, 75(4): 660-664.
doi: 10.1016/j.carbpol.2008.09.010
[30] SHI Sheng, ZHANG Meiling, LING Chen, et al. Extraction and characterization of microcrystalline cellulose from waste cotton fabrics via hydrothermal method[J]. Waste Management, 2018, 82:139-146.
doi: S0956-053X(18)30641-X pmid: 30509575
[31] XU Wenyang, GRÉNMAN Henrik, LIU Jun, et al. Mild oxalic-acid-catalyzed hydrolysis as a novel approach to prepare cellulose nanocrystals[J]. Chemnanomat, 2017, 3(2): 109-119.
doi: 10.1002/cnma.201600347
[32] YU Houyong, YAN Chenfeng, LEI Xiaoxia, et al. Novel approach to extract thermally stable cellulose nanospheres with high yield[J]. Materials Letters, 2014, 131:12-15.
doi: 10.1016/j.matlet.2014.05.159
[33] WADA Masahisa, HEUX Laurent, SUGIYAMA Junji. Polymorphism of cellulose I family: reinvestigation of cellulose IVI[J]. Biomacromolecules, 2004, 5(4): 1385-1391.
pmid: 15244455
[34] LUO Jing, HUANG Kaixuan, XU Yong, et al. A comparative study of lignocellulosic nanofibrils isolated from celery using oxalic acid hydrolysis followed by sonication and mechanical fibrillation[J]. Cellulose, 2019, 26(9): 5237-5246.
doi: 10.1007/s10570-019-02454-5
[35] MANCINI Sandro Donnini, ZANIN Maria. Post consumer PET depolymerization by acid hydrolysis[J]. Polymer:Plastics Technology and Engineering, 2007, 46(2): 135-144.
doi: 10.1080/03602550601152945
[36] SINHA Vijaykumar, PATEL Mayank R, PATEL Jigar V. PET waste management by chemical recycling: areview[J]. Journal of Polymers and the Environment, 2010, 18(1): 8-25.
doi: 10.1007/s10924-008-0106-7
[37] WANG Xin, LV Tao, WU Minghui, et al. Aluminum doped solid acid with suitable ratio of bronsted and Lewis acid sites synthesized by electric-flocculation of phosphotungstic acid via hydrothermal treatment for producing 5-hydroxymethylfurfural from glucose[J]. Applied Catalysis A: General, 2019, 574:87-96.
doi: 10.1016/j.apcata.2019.02.005
[38] RAMLI Nur Aainaa Syahirah, AMIN Nor Aishah Saidina. A new functionalized ionic liquid for efficient glucose conversion to 5-hydroxymethyl furfural and levulinic acid[J]. Journal of Molecular Catalysis A: Chemical, 2015, 407:113-121.
doi: 10.1016/j.molcata.2015.06.030
[1] JIANG Tao, ZHOU Li, WANG Lin, CHENG Weizhao, ZHOU Anzhan. Typical model for recycling of used clothes and analysis of environmental impact [J]. Journal of Textile Research, 2022, 43(01): 186-192.
[2] DONG Shuang, KONG Yuying, GUAN Jinping, CHENG Xianwei, CHEN Guoqiang. Chemical separation and recycling of waste polyester/cotton blended military training uniforms [J]. Journal of Textile Research, 2022, 43(01): 178-185.
[3] LI Bo, FAN Wei, GAO Xingzhong, WANG Shujuan, LI Zhihu. Carbon fiber reinforced epoxy based vitrimer composite material closed-loop recycling [J]. Journal of Textile Research, 2022, 43(01): 15-20.
[4] YANG Xing, LI Qingzhou, WU Min, ZHOU Yongkai. Circular economy in European Union textile industry chain and key issues of waste textiles treatment [J]. Journal of Textile Research, 2022, 43(01): 106-112.
[5] HAN Fei, LANG Chenhong, QIU Yiping. Research progress in resource recycling based on waste textiles [J]. Journal of Textile Research, 2022, 43(01): 96-105.
[6] LI Yanyan, LI Mengjuan, GE Mingqiao. Research progress on decolorization and recycling of colored polyester waste [J]. Journal of Textile Research, 2021, 42(08): 17-23.
[7] WANG Shaopeng, WU Baozhai, HE Zhou. Technology progress in recycling and reuse of waste textiles [J]. Journal of Textile Research, 2021, 42(08): 34-40.
[8] DU Huanzheng, LU Sha, SUN Jian, KANG Qian. Research on constructing high-value recycling systems for municipal textile wastes [J]. Journal of Textile Research, 2021, 42(06): 1-7.
[9] XIN Minyue, ZHENG Qiang, WU Jiangdan, LIANG Liefeng. Preparation of porous ZnO films by coaxial electrospinning and photocatalytic performance thereof [J]. Journal of Textile Research, 2019, 40(10): 42-47.
[10] CHEN Xin, ZHANG Jialin, WANG Jidong, LI Xiaoqiang, GE Mingqiao. Decolorization of polyester alcoholysis solution by electrocoagulation [J]. Journal of Textile Research, 2019, 40(10): 98-104.
[11] RUAN Fangtao, SHI Jian, XU Zhenzhen, XING Jian. Research progress in recycling and reuse of carbon fiber reinforced resin composites [J]. Journal of Textile Research, 2019, 40(06): 152-157.
[12] WANG Xiaofeng, ZHU Chen, YUAN Yin. Decision of energy-saving and emission-reduction in textile industry based on supply chain [J]. Journal of Textile Research, 2019, 40(01): 166-174.
[13] . Softening treatment of cotton-straw bast fibers by oxalic acid [J]. Journal of Textile Research, 2016, 37(3): 21-24.
[14] . Study on removing of mordant agent from natural dyes printed fabric white ground with oxalic acid [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(10): 85-0.
[15] . Research progress of recycled use of waste textiles [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 153-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JI Changchun, ZHANG Kaiyuan, WANG Yudong, WANG Xinhou. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(08): 175 -180 .
[2] SUN Guangwu, LI Jiecong, XIN Sanfa, WANG Xinhou. Diameter prediction of melt-blown fiber based on non-Newtonian fluid constitutive equations[J]. Journal of Textile Research, 2019, 40(11): 20 -25 .
[3] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process[J]. Journal of Textile Research, 2020, 41(02): 26 -32 .
[4] LI Huiqin, ZHANG Nan, WEN Xiaodan, GONG Jixian, ZHAO Xiaoming, WANG Zhishuai. Progress of noise reduction product based on fiber materials[J]. Journal of Textile Research, 2020, 41(03): 175 -181 .
[5] ZHANG Xing, LIU Jinxin, ZHANG Haifeng, WANG Yuxiao, JIN Xiangyu. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(03): 168 -174 .
[6] SUN Huanwei, ZHANG Heng, ZHEN Qi, ZHU Feichao, QIAN Xiaoming, CUI Jingqiang, ZHANG Yifeng. Filtrations of propylene-based micro-nano elastic filters via melt blowing process[J]. Journal of Textile Research, 2020, 41(10): 20 -28 .
[7] WANG Yudong, JI Changchun, WANG Xinhou, GAO Xiaoping. Design and numerical analysis of new types of melt blowing slot-dies[J]. Journal of Textile Research, 2021, 42(07): 95 -100 .
[8] GAO Meng, WANG Zengyuan, LOU Qiwei, CHEN Gangjin. Characteristics of charge capture of melt-blown polypropylene electret nonwovens by corona charging[J]. Journal of Textile Research, 2021, 42(09): 52 -58 .
[9] HU Qiaole, BIAN Guofeng, QIU Yiping, WEI Yi, XU Zhenzhen. Sound insulation properties of honeycomb sandwich structure composite for high-speed train floors[J]. Journal of Textile Research, 2021, 42(10): 75 -83 .
[10] DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission[J]. Journal of Textile Research, 2022, 43(01): 36 -42 .