Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 70-78.doi: 10.13475/j.fzxb.20210703809
• Textile Engineering • Previous Articles Next Articles
XIAO Qi1(), WANG Rui2,3, ZHANG Shujie2,3, SUN Hongyu4, WANG Jingru4
CLC Number:
[1] | XIAO Q, WANG R, ZHANG S, et al. Prediction of pilling of polyester-cotton blended woven fabric using artificial neural network models[J]. Journal of Engineered Fibers and Fabrics, 2020, 15(3): 1-10. |
[2] | 肖琪, 王瑞, 孙红玉, 等. 织物起毛起球机制的理论模型研究进展[J]. 纺织学报, 2020, 41(2): 172-178. |
XIAO Q, WANG R, SUN H, et al. Research progress on theoretical models of mechanisms of fuzzing and pilling[J]. Journal of Textile Research, 2020, 41(2): 172-178. | |
[3] | WANG R, XIAO Q. Study on pilling performance of polyester-cotton blended woven fabrics[J]. Journal of Engineered Fibers and Fabrics, 2020, 15(2): 1-10. |
[4] |
LIU Z, YANG W, ZHOU X D. Synthesis and application of polysiloxane-modified polyurethane as anti-pilling finishing agent for polyester-cotton fabric[J]. Polymer-Korea, 2020, 44(6): 763-768.
doi: 10.7317/pk.2020.44.6.763 |
[5] |
HUANG Z C, CHEN W X. Preparation and characterization of hot melt copolyester (PBTI) ultrafine particles and their effect on the anti-pilling performance of polyester/cotton fabrics[J]. Polymers, 2018, 10(10): 123-140.
doi: 10.3390/polym10020123 |
[6] | REN Y F, FU R R, FANG K J, et al. Clean dyeing of acrylic fabric by sustainable red bacterial pigment based on nano-suspension system[J]. Journal of Cleaner Production, 2021, 281: 253-271. |
[7] |
WAN A, YU W. Effect of wool fiber modified by ecologically acceptable ozone-assisted treatment on the pilling of knit fabrics[J]. Textile Research Journal, 2012, 82(1): 27-36.
doi: 10.1177/0040517511414973 |
[8] |
HAJILARI M, ESFANDIARI A H, DABIRYAN H. Investigation of effect of fibers modulus on pilling of acrlic fabrics[J]. Journal of The Textile Institute, 2009, 100(2): 135-140.
doi: 10.1080/00405000701679681 |
[9] |
HEARLE J W S, WILKINS A H. Movement of fibers in assemblies[J]. Journal of The Textile Institute, 2006, 97(1): 1-9.
doi: 10.1533/joti.2005.0107 |
[10] |
HEARLE J W S, WILKINS A H. Mechanistic modelling of pilling: part I: detailing of mechanisms[J]. Journal of The Textile Institute, 2006, 97(4): 359-368.
doi: 10.1533/joti.2005.0163 |
[11] |
HEARLE J W S, WILKINS A H. Mechanistic modelling of pilling: part II: individual-fibre computational model[J]. Journal of The Textile Institute, 2006, 97(4): 369-376.
doi: 10.1533/joti.2005.0164 |
[12] |
XU D H, GE M B, ZHANG H L. Numerical solution of a dynamic model of heat and moisture transfer in porous fabric under low temperature[J]. International Journal of Heat and Mass Transfer, 2013, 61: 149-157.
doi: 10.1016/j.ijheatmasstransfer.2013.01.045 |
[13] |
XIE J, CHEN X, ZHANG Y, et al. Experimental and numerical investigation of the needling process for quartz fibers[J]. Composites Science and Technology, 2018, 165: 115-123.
doi: 10.1016/j.compscitech.2018.06.009 |
[14] |
XIAO Q, WANG R, SUN H Y, et al. Objective evaluation of fabric pilling based on image analysis and deep learning algorithm[J]. International Journal of Clothing Science and Technology, 2021, 33(4): 495-512.
doi: 10.1108/IJCST-02-2020-0024 |
[15] | 肖琪, 王瑞, 陆鑫, 等. 基于布面毛羽长度和毛羽密度的涤/棉混纺机织物起球倾向[J]. 丝绸, 2020, 57(9): 27-33. |
XIAO Qi, WANG Rui, LU Xin, et al. Pilling tendency of polyester/cotton blended woven fabric based on fabric hairiness length and hairiness density[J]. Journal of Silk, 2020, 57(9): 27-33. |
|