Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 106-111.doi: 10.13475/j.fzxb.20210704006

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation and photocatalytic properties of cotton fabrics loaded with polymetallic organic framework material

ZHENG Linjuan1, YU Jia1, YIN Chong2, LIANG Zhijie1, MAO Qinghui1()   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. Nantong Hymo Industrial Co., Ltd., Nantong, Jiangsu 226000, China
  • Received:2021-07-14 Revised:2022-04-21 Online:2022-10-15 Published:2022-10-28
  • Contact: MAO Qinghui E-mail:1731mqh@ntu.edu.cn

Abstract:

To prepare cotton fabrics with photocatalytic properties, the in-situ growth of polyacids on cotton fabrics was achieved by introducing metal organic framework materials into which polymetallic oxides of suitable dimensions were loaded. The effects of metal ion reaction time, amount of polymetallic acid, organic ligand and reaction time of polymetallic acid on the photocatalytic performance of the prepared cotton fabrics loaded with polymetallic organic framework material (POMOF) were investigated, and the morphology and structure of cotton fabrics loaded with POMOF were characterized with the aid of scanning electron microscopy and FT-IR spectrometry. The results show that the carboxylation modification of cotton fabrics is able to form multiple active sites on its surface, and the degradation rate of cotton fabrics loaded with POMOF to Rhodamine B solution (10 mg/L) reached 92.23% in 135 min when the modified cotton fabric was reacted in copper nitrate solution for 12 h, the amount ratio of homophthalic acid to polytungstate was 1∶4, and the reaction time of organic ligand and polyacid was 10 h. This cotton fabric loaded with POMOF demonstrated good photocatalytic performance and has great potential in the degradation of printing and dyeing wastewater.

Key words: polytungstate, metal-organic frame, Rhodamine B, photocatalytic degradation, wastewater treatment, printing and dyeing wastewater

CLC Number: 

  • TS195.5

Fig.1

SEM images of cotton fabric before and after carboxylation. (a) Unmodified;(b) Carboxyl modified"

Fig.2

Content of copper ions on cotton fabric at different reaction time"

Fig.3

In situ growth mechanism of POMOF on cotton fabric"

Tab.1

Effect of polyoxometalate dosage on photocatalytic degradation rate of Rhodamine B"

有机配体与多
钨酸盐的量比
降解
率/%
有机配体与多
钨酸盐的量比
降解
率/%
1∶10 78.07 1∶14 92.23
1∶11 77.64 1∶15 92.96
1∶12 82.51 1∶16 93.12
1∶13 84.63 1∶17 93.37

Fig.4

Effect of reaction time between polytungstate and phthalic acid on photocatalytic degradation rate of Rhodamine B"

Fig.5

SEM images of pure cotton fabric(a) and cotton fabric loaded with POMOF(b)"

Tab.2

Relative element content of POMOF based cotton fabric%"

元素 质量分数 原子分数
C 57.2 0.2
O 26.7 0.2
Cu 9.0 0.1
W 7.1 0.3
P 0.0 0.2

Fig.6

Infrared spectra comparison of pure cotton fabric,modified cotton fabric and cotton fabric loaded with POMOF"

Fig.7

Influence of illumination time on Rhodamine B degradation rate"

Fig.8

SEM images of cotton fabric loaded with POMOF before (a)and after (b)photocatalysis"

[1] SABARINATHAN C, KARUPPASAMY P, VIJAYAKUMAR C T, et al. Development of methylene blue removal methodology by adsorption using molecular polyoxometalate: kinetics, thermodynamics and mechanistic study[J]. Microchemical Journal, 2019, 146: 315-326.
doi: 10.1016/j.microc.2019.01.015
[2] KOOHI S R, ALLAHYARI S, KAHFOROOSHAN D, et al. Natural minerals as support of silicotungstic acid for photocatalytic degradation of methylene blue in wastewater[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29(2): 365-377.
doi: 10.1007/s10904-018-1007-4
[3] WANG M, ZHANG M, ZHANG M, et al. In-situ mineralized robust polysiloxane-Ag@ZnO on cotton for enhanced photocatalytic and antibacterial activities[J]. Carbohydrate Polymers, 2019, 217: 15-25.
doi: S0144-8617(19)30435-7 pmid: 31079671
[4] BUTLER A, WALKER J. Marine haloperoxidases[J]. Chemical Reviews, 1993, 93(5): 1937-1944.
doi: 10.1021/cr00021a014
[5] BUTLER A, CLAGUE M, MEISTER G. Vanadium peroxide complexes[J]. Chemical Reviews, 1994, 94(3): 625-638.
doi: 10.1021/cr00027a004
[6] 郁佳, 郑琳娟, 张莉, 等. 缺位型多钼酸盐改性棉织物的制备及抗紫外性能[J]. 印染助剂, 2020, 37(11): 25-28.
YU Jia, ZHENG Linjuan, ZHANG Li, et al. Preparation and UV resistance of cotton fabric modified by polymolybdate[J]. Textile Auxiliaries, 2020, 37(11):25-28.
[7] 张莉, 郁佳, 尹冲, 等. 多钒酸盐基棉织物的制备及光催化性能研究[J]. 棉纺织技术, 2022, 50(3): 39-43.
ZHANG LI, YU Jia, YIN Chong, et al. Preparation and photocatalytic properties of polyvanadate based cotton fabric[J]. Cotton Textile Technology, 2022, 50(3):39-43.
[8] CHUI S, LO S, CHARMANT J, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150.
pmid: 10024237
[9] GETZSCHMANN J, SENKOVSKA I, WALLACHER D, et al. Methane storage mechanism in the metal-organic framework Cu3(BTC)2: an in situ neutron diffraction study[J]. Microporous and Mesoporous Materials, 2010, 136(1): 50-58.
doi: 10.1016/j.micromeso.2010.07.020
[10] KÜSGENS P, SIEGLE S, KASKEL S. Crystal growth of the metal-organic framework Cu3(BTC)2on the surface of pulp fibers[J]. Advanced Engineering Materials, 2009, 11(1/2): 93-95.
doi: 10.1002/adem.200800274
[11] PINTO M, SIERRA-AVILA C, HINESTROZA J. In situ synthesis of a Cu-BTC metal-organic frame-work (MOF 199) onto cellulosic fibrous substrates: cotton[J]. Cellulose, 2012, 19(5): 1771-1779.
doi: 10.1007/s10570-012-9752-y
[12] 白晓贺, 荣莎莎. 碘量法测定铜含量的应用研究[J]. 江西化工, 2020, 36(5): 15-17.
BAI Xiaohe, RONG Shasha. Application study on the determination of copper content by iodimetry[J]. Jiangxi Chemical, 2020, 36(5): 15-17.
[13] 王晓燕, 张瑞萍, 黄娟华, 等. 柠檬酸交联棉织物的纳米二氧化钛功能整理[J]. 印染, 2014, 40(24): 7-13.
WANG Xiaoyan, ZHANG Ruiping, HUANG Juanhua, et al. Functional finishing of citric acid cross-linked cotton fabric with nano titanium dioxide[J]. China Dyeing & Finishing, 2014, 40(24): 7-13.
[14] 王恩波, 胡长林, 许林. 多酸化学导论[M]. 北京: 化学工业出版社, 1998: 152.
WANG Enbo, HU Changlin, XU Lin. Introduction to polyacidification[M]. Beijing: Chemical Industry Press, 1998: 152.
[15] 李鹏熙, 陈庆淬, 杨玲玲, 等. 磷钨酸/SiC复合材料的制备及光催化性能研究[J]. 水处理技术, 2021, 47(3): 63-67.
LI Pengxi, CHEN Qingcui, YANG Lingling, et al. Preparation and photocatalytic performance of phosphotungstic acid/SiC composites[J]. Water Treatment Technology, 2021, 47(3): 63-67.
[16] 李庆, 张莹, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(2): 112-118.
LI Qing, ZHANG Ying, FAN Zenglu, et al. Adsorption and visible light degradation of dye wastewater by Cu-organic framework[J]. Journal of Textile Research, 2018, 39(2):112-118.
[1] FENG Yan, LI Liang, LIU Shuping, LI Shujing, LIU Rangtong. Photocatalytic synergistic efficiency of viscose fabric loaded with nitrogen carbon quantum dots/titanium dioxide [J]. Journal of Textile Research, 2022, 43(10): 112-118.
[2] ZHOU Xiaoju, HU Zhenglong, REN Yiming, XIE Landong. Fabrication and photocatalyic performance of Bi2MoO6 modified TiO2 nanorod array photocatalyst [J]. Journal of Textile Research, 2022, 43(10): 97-105.
[3] YANG Li, WANG Tao, SHI Xianbing, HAN Zhenbang. Preparation of modified polyacrylonitrile fiber supported MoSx/TiO2 composite photocatalyst and its performance for dye degradation [J]. Journal of Textile Research, 2022, 43(09): 149-155.
[4] WANG Jing, LOU Yaya, WANG Chunmei. Preparation and decolorization of iron-based metal\|organic framework/activated carbon fiber composites [J]. Journal of Textile Research, 2022, 43(08): 126-131.
[5] ZHANG Yaning, ZHANG Hui, SONG Yueyue, LI Wenming, LI Wenjun, YAO Jiale. Preparation of discarded mask-based ZIF-8/Ag/TiO2 composite and its photocatalytic property for dye degradation [J]. Journal of Textile Research, 2022, 43(07): 111-120.
[6] GAO Luxi, LÜ Xuechuan, ZHANG Chi, SONG Hanlin, GAO Xiaohan. Synthesis and decolorizing performance of modified flocculant for treating dyeing wastewater [J]. Journal of Textile Research, 2022, 43(07): 121-128.
[7] XIE Mengyu, HU Xiaolin, LI Xing, QU Jian'gang. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite [J]. Journal of Textile Research, 2022, 43(04): 117-123.
[8] YU Fan, ZHENG Tao, TANG Tao, JIN Mengting, ZHU Hailin, YU Bin. Preparation of nonwoven composites based on metal-organic frame compounds and removal of hexavalent chromium from wastewater [J]. Journal of Textile Research, 2022, 43(03): 139-145.
[9] DENG Yang, SHI Xianbing, WANG Tao, LIU Liwei, HAN Zhenbang. Preparation and performance of modified polyacrylonitrile fibers photocatalyst with MIL-53(Fe) [J]. Journal of Textile Research, 2022, 43(03): 58-63.
[10] WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu. Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method [J]. Journal of Textile Research, 2022, 43(02): 53-60.
[11] ZHANG Mengdi, ZHANG Wei, YAO Jiming. Application of natural clay minerals in electrocoagulation of indigo dyeing wastewater [J]. Journal of Textile Research, 2022, 43(02): 196-201.
[12] YANG Tengxiang, SHEN Guodong, QIAN Lijiang, HU Huajun, MAO Xue, SUN Runjun. External electric field polarized Ag-BaTiO3/polyester fabric and its photocatalytic properties [J]. Journal of Textile Research, 2022, 43(02): 189-195.
[13] SHI Minhui, LI Bingrui, WANG Ting, WU Liguang. Mechanism and performance of TiO2 composite photocatalysts for photo-degradation of methyl-orange in highly saline wastewater [J]. Journal of Textile Research, 2021, 42(12): 103-110.
[14] LI Qing, CHEN Linghui, LI Dan, WU Zhiqiang, ZHU Wei, FAN Zenglu. Research progress in photocatalytic degradation of dyes using metal-organic frameworks [J]. Journal of Textile Research, 2021, 42(12): 188-195.
[15] LAI Xing, WANG Chun, XIAO Changfa, WANG Liming, XIN Binjie. Progress in preparation and application of aromatic polyamide separation membrane [J]. Journal of Textile Research, 2021, 42(10): 172-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!