Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 67-74.doi: 10.13475/j.fzxb.20210704108

• Textile Engineering • Previous Articles     Next Articles

Study on heat-storage and heat-release of thermal protective fabrics under deformation

GUO Jing1, ZHOU Qianwen1, HE Jiazhen1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou,Jiangsu 215021, China
  • Received:2021-07-14 Revised:2022-04-08 Online:2022-07-15 Published:2022-07-29
  • Contact: HE Jiazhen E-mail:jzhe@suda.edu.cn

Abstract:

In order to explore the protective mechanism of thermal protective fabrics under tensile deformation, a tester to measure the heat-storage and heat-release properties of thermal protective fabrics under deformation was developed. Using this device, the thermal-protective and thermal-hazardous performances, caused by heat-storage and heat-release, of six different thermal protective fabrics under tensile deformation were studied. The results show that with the increase of the tensile extension of the fabric, the accumulated stored energy within the fabric during the heat exposure stage decreases while the skin heat gain significantly increases, leading to the decrease of the thermal protective performance. In addition, when a double layer fabric system was subject to tensile deformation, the outer layer fabric usually stores more thermal energy than the thermal liner and the reduction in the accumulated stored engergy was mostly because the decrease of heat storage in the thermal liner. During the cooling stage, the accumulated heat discharge to the skin gradually decreases and the heat discharge efficiency increases as the tensile strain rate of the fabric increases. When the fabric was under tensile deformation, the amount of accumulated heat discharge is found to be proportional to the accumulated stored energy.

Key words: thermal protective fabric, heat storage, heat discharge, tensile deformation, skin burns

CLC Number: 

  • TS941.73

Tab.1

Basic properties of fabrics"

织物编号 织物层 织物成分 组织结构 厚度/mm 面密度/(g·m-2) 比热容/(kJ·(kg·℃)-1)
OS1 外层1 98%芳纶、2%抗静电纤维 斜纹 0.45 187.81 1.33
OS2 外层2 98%芳纶、2%抗静电纤维 斜纹 0.52 200.65 1.33
TL1 隔热层1 80%Nomex、20% Kevlar与50%芳纶、50%粘胶 水刺毡与舒适层绗缝 1.18 205.50 1.08
TL2 隔热层2 80%Nomex、20% Kevlar与50%芳纶、50%粘胶 水刺毡与舒适层绗缝 1.67 258.05 1.08

Tab.2

Composition and basic properties of fabric systems"

织物系统
编号
织物组
合方式
厚度/
mm
面密度/
(g·m-2)
透气率/
(cm·s-1)
S1 OS1 0.45 187.81 18.20
S2 OS2 0.52 200.65 20.73
D1 OS1+TL1 1.58 393.31 14.87
D2 OS2+TL1 1.61 406.15 16.34
D3 OS1+TL2 2.08 445.85 14.57
D4 OS2+TL2 2.20 458.69 15.74

Fig.1

Top view of heat-storage and heat-release property tester for fabrics with deformation"

Fig.2

Device for simulating tensile deformation of fabrics"

Fig.3

Energy storage-discharge process of fabric system D1 with different tensile extensions. (a) Accumulated heat storage; (b) Heat storage rate"

Tab.3

Heat storage within fabric systems at end of thermal exposure"

拉伸
率/%
S1 S2 D1 D2 D3 D4
平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差
0 47.36 1.35 54.71b 2.17 136.65d 2.35 145.00f 0.77 154.14g 3.55 173.04 5.81
3 38.53 a 0.64 49.89b 3.40 131.10d 5.70 142.06f 5.09 146.76g 5.44 150.43h 3.82
6 35.85a 0.98 39.75c 2.61 119.09e 5.04 125.26 5.23 145.56g 3.18 149.83h 0.26
9 36.27a 2.48 37.77c 0.56 112.89e 3.95 117.04 1.45 133.25 5.04 148.11h 4.44

Fig.4

Distributions of heat storage in fabric systems with different tensile extensions"

Fig.5

Change of skin heat gain of fabric system D1 with different tensile extensions. (a) Amount of skin heat gain; (b) Rate of skin heat gain"

Fig.6

Accumulated skin heat gain of fabric system with different tensile extensions"

Fig.7

Heat discharge of fabric systems with different tensile extension"

Fig.8

Relationship between heat storage and heat discharge"

Tab.4

Heat discharge efficiency of fabric system%"

拉伸
S1 S2 D1 D2 D3 D4
平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差
0 74.44a 3.07 66.49c 5.77 57.14 0.91 54.17 0.18 51.30i 2.39 46.52k 1.20
3 85.57ab 4.57 66.77cd 3.58 51.07f 3.36 49.64h 4.12 50.83ij 3.12 50.95kl 2.89
6 88.83b 5.46 75.17de 4.06 54.47fg 1.50 55.94h 0.85 50.93ij 1.62 49.82l 1.63
9 84.78b 1.99 77.89e 5.88 57.19g 1.95 57.24h 2.63 54.92j 2.45 49.56l 2.88
[1] 苏云. 火灾高温蒸汽环境下消防服的热湿传递与皮肤烫伤预测[D]. 上海: 东华大学, 2018:1-14.
SU Yun. Heat and humidity transfer and skin scald prediction of fire suit in high temperature and steam environment[D]. Shanghai: Donghua University, 2018: 1-14.
[2] SONG G W, CAO W, FARZAN G. Analyzing stored thermal energy and thermal protective performance of clothing[J]. Textile Research Journal, 2011, 81(11): 1124-1138.
doi: 10.1177/0040517511398943
[3] TORVI D A, THRELFALL T G. Heat transfer model of flame resistant fabrics during cooling after exposure to fire[J]. Fire Technology, 2005, 42(1): 27-48.
doi: 10.1007/s10694-005-3733-8
[4] TORVI D A, DOUGLAS D. Influence of air gaps on bench top test results of flame resistant fabrics[J]. Journal of Fire Protection Engineering, 1999, 10(1): 1-12.
[5] HE J Z, LU Y H, YANG J. Quantification of the energy storage caused dual performance of thermal protective clothing containing with moisture exposed to hot steam[J]. Energy Science & Engineering, 2019, 7(6): 2585-2595.
[6] HUANG D M, YANG H, QI Z K. Questionnaire on firefighters' protective clothing in china[J]. Fire Technology, 2011, 48(2): 255-268.
doi: 10.1007/s10694-011-0214-0
[7] LI J, LI X H, LU Y H. A new approach to characterize the effect of fabric deformation on thermal protective performance[J]. Measurement Science and Technology, 2012, 23(4): 1-6.
[8] HE J Z, CHEN Y, WANG L C, et al. Quantitative assessment of the thermal stored energy in protective clothing under low-level radiant heat exposure[J]. Textile Research Journal, 2017, 88(24):2867-2879.
doi: 10.1177/0040517517732084
[9] HE J Z, LU Y H, CHEN Y, et al. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge[J]. Journal of Hazard Materials, 2017, 338(15): 76-84.
doi: 10.1016/j.jhazmat.2017.05.012
[10] 中泽愈, 袁观洛, 人体与服装: 人体结构·美的要素·纸样[M]. 北京: 中国纺织出版社, 2000:67-106.
ZHONG Zeyu, YUAN Guanluo. Human body and clothing: human body structure·elements of beauty·pattern[M]. Beijing: China Textile and Apparel Press, 2000: 67-106.
[11] LAWSON J, TWILLEY W. Development of an apparatus for measuring the thermal performance of fire fighters' protective clothing[R]. Gaithersburg: National Institute of Standards and Technology, 2000: 1-57.
[12] ZHU F L, ZHANG W Y. Modeling heat transfer for heat-resistant fabrics considering pyrolysis effect under an external heat flux[J]. Journal of Fire Sciences, 2009, 27(1): 81-96.
doi: 10.1177/0734904108094960
[13] TORVI D A, DALE J. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999, 35(3): 210-231.
doi: 10.1023/A:1015484426361
[14] ZHAI L N, LI J. Prediction methods of skin burn for performance evaluation of thermal protective clothing[J]. Burns, 2015, 41(7): 85-96.
doi: 10.1016/j.burns.2014.05.001
[15] LU Y H, SONG G W, LI J, et al. Effect of an air gap on the heat transfer of protective materials upon hot liquid splashes[J]. Textile Research Journal, 2013, 83(11): 1156-1169.
doi: 10.1177/0040517512468809
[16] STOLL A, CHIANTA M, Method and rating system for evaluation of thermal protection[J]. Aerospace Medical Association Journals, 1969, 40(11): 1232-1240.
[1] LIU Guojin, SHI Feng, CHEN Xinxiang, ZHANG Guoqing, ZHOU Lan. Preparation of polyurethane/phase change wax functional finishing agents for heat storage and temperature regulation and their applications on cotton fabrics [J]. Journal of Textile Research, 2020, 41(07): 129-134.
[2] YANG Jian, ZHANG Guoqing, LIU Guojin, KE Xiaoming, ZHOU Lan. Preparation of composite phase change microcapsules and its application on cotton fabrics [J]. Journal of Textile Research, 2019, 40(10): 127-133.
[3] WANG Lu, DING Xiaojun, XIA Xin, WANG Hong, ZHOU Xiaohong. Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric [J]. Journal of Textile Research, 2019, 40(10): 79-84.
[4] ZHANG Yannan, ZHOU Wei, SHANG Yajing, ZHAO Wenzheng. Micro-deformation measurement and acoustic emission monitoring of three-dimensional braided composites under tensile loading [J]. Journal of Textile Research, 2019, 40(08): 55-63.
[5] CHEN Xu, WU Bingyang, FAN Ying, YANG Musheng. Numerical simulation of low temperature protection process for heat storage fabrics [J]. Journal of Textile Research, 2019, 40(07): 163-168.
[6] . Infouence of moisture content on heat stored performance of multilayer fabric assemblies for firefighters [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 108-113.
[7] . Preparation of alginate-chitosan phase change heat storage microcapsules [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 18-0.
[8] ZHU Fanglong;ZHANG Weiyuan. Fractal model for effective thermal conductivity of emergency thermal protective fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(6): 39-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .