Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 70-75.doi: 10.13475/j.fzxb.20210706806

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of tetrahydrofuran homopolyether-polybutyleneterephthalate/polyethylene terephthalate parallel composite fiber

HE Qi1,2, LI Junling1,2, JIN Gaoling3, LIU Jin1,2, KE Fuyou1,2, CHEN Ye1,2(), WANG Huaping1,2   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    3. China Chemical Fibers Association, Beijing 100020, China
  • Received:2021-07-23 Revised:2022-03-08 Online:2022-09-15 Published:2022-09-26
  • Contact: CHEN Ye E-mail:chenye@dhu.edu.cn

Abstract:

In view of insufficient crimp elasticity and poor wearing comfort of polybutylene terephthalate/polyethylene terephthalate (PBT/PET) parallel composite fibers, tetrahydrofuran homopolyether (PTMG) was selected to modify PBT and conventional PET were used as raw materials to prepare PTMG-PBT/PET parallel composite fibers by composite spinning. The effect of PTMG mass fraction on the properties of polyether ester and composite fibers, and the crimp properties of composite fibers by heat treatment process were studied. The results show that with the increase of the mass fraction of PTMG, the water absorption and moisture absorption rate of polyether ester can reach 4.10% and 1.62% respectively, the contact angle can reach 63.81°, and the crimping performance of the composite fiber is also significantly improved, reaching a crimp ratio of 48%. Heat treatment can further improve the crimp properties of composite fibers and the effect of wet heat treatment is shown to be better than that of dry heat treatment. After wet heat treatment, the crimp ratio and crimp recovery of the composite fibers reach 70% and 55%, respectively. PTMG can also improve the normal pressure dye uptake rate of composite fibers, which reaches as high as 93.25%, and is 12% higher than that of PBT/PET parallel composite fibers.

Key words: tetrahydrofuran homopolyether, parallel composite fiber, moisture absorption property, heat treatment, crimp property, dye uptake rate

CLC Number: 

  • TQ342.22

Tab.1

Basic performance parameters of raw material slicing"

样品名称 PBT质量
分数/%
PTMG质
量分数/%
特性黏度/
(dL·g-1)
结晶
温度/℃
熔点/
PET 0.68 127 258
PBT 1.10 148 230
PTMG-PBT90 90 10 1.22 129 210
PTMG-PBT80 80 20 1.34 125 203
PTMG-PBT65 65 35 1.45 122 197
PTMG-PBT45 45 55 1.57 120 193

Fig.1

Preparation process of parallel composite fiber"

Tab.2

Parallel composite fiber spinning parameters"

原料名称 纺丝温度/℃ 喷丝板
温度/℃
环吹风
温度/℃
纺丝速度/
(m·min-1)
一区 二区 三区 四区
PET 295 300 300 295 290 30 600
PTMG-PBT 270 275 275 270

Tab.3

Parallel composite fiber specifications"

纤维名称 线密度/dtex
PBT/PET 255
PTMG-PBT90/PET 232
PTMG-PBT80/PET 219
PTMG-PBT65/PET 189
PTMG-PBT45/PET 144

Fig.2

Water contact angles of PTMG-PBT with different mass fractions of PTMG"

Tab.4

Water absorption and moisture absorption properties and volume specific resistance of PBT and PTMG-PBT"

试样名称 吸水率/% 吸湿率/% 体积比电阻/(Ω·cm)
PBT 1.22 0.61 5.82×1012
PTMG-PBT90 1.44 0.67 1.25×1012
PTMG-PBT80 1.96 1.17 6.34×1011
PTMG-PBT65 2.47 1.32 2.45×1011
PTMG-PBT45 4.10 1.62 1.25×1010

Fig.3

Orientation properties of parallel composite fibers with different mass fractions of PTMG"

Tab.5

Mechanical properties of parallel composite elastic fibers"

纤维名称 断裂强度/(cN·dtex-1) 断裂伸长率%
PBT/PET 2.93 17.4
PTMG-PBT90/PET 2.68 51.8
PTMG-PBT80/PET 2.54 70.2
PTMG-PBT65/PET 2.19 80.7
PTMG-PBT45/PET 1.97 90.1

Fig.4

Boiling water shrinkage of parallel composite fibers with different mass fractions of PTMG"

Fig.5

Crimp ratio of parallel composite fiber with different mass fractions of PTMG"

Fig.6

Effect of dry heat treatment on crimp properties of parallel composite fiber. (a) Different dry heat treatment temperatures;(b) Different dry heat treatment time"

Fig.7

Crimp properties of parallel composite fibers under different heat treatments.(a)Crimp ratio; (b)Crimp recovery"

Fig.8

Dye uptake rate of parallel composite fibers with different mass fractions of PTMG"

[1] 武荣瑞. 我国聚酯纤维改性的技术进展[J]. 高分子通报, 2008(8): 101-108.
WU Rongrui. Development of technology of PET fiber modification in China[J]. Chinese Polymer Bulletin, 2008(8): 101-108.
[2] FRATERNALI Fernando, CIANCIA Vincenzo, CHECHILE Rosaria, et al. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete[J]. Composite Structures, 2011, 93(9): 2368-2374.
doi: 10.1016/j.compstruct.2011.03.025
[3] 梁飞, 王锐, 张大省, 等. 异形改性涤纶织物结构设计及其吸放湿性能[J]. 纺织学报, 2006, 27(8): 71-75.
LIANG Fei, WANG Rui, ZHANG Dasheng, et al. Structure design of profile modified polyester fabric and its hygroscopicity and moisture liberation properties[J]. Journal of Textile Research, 2006, 27 (8): 71-75.
[4] LIU Wangcheng, ZHANG Jinwen, LIU Hang. Conductive bicomponent fibers containing polyaniline produced via side-by-side electrospinning[J]. Polymers, 2019, 11(6): 954-223.
doi: 10.3390/polym11060954
[5] 张大省, 王锐, 周静宜, 等. 加强差别化聚酯纤维的开发[J]. 合成纤维, 2000, 29(2): 10-13.
ZHANG Dasheng, WANG Rui, ZHOU Jingyi, et al. Strengthen the development of speciality PET fiber[J]. Synthetic Fiber in China, 2000, 29(2): 10-13.
[6] 罗锦, 王慷, 王府梅. 确定PTT/PET并列复合纤维卷曲结构的材料参数[J]. 东华大学学报(自然科学版), 2010, 36(1): 30-36.
LUO Jin, WANG Kang, WANG Fumei. The material parameters of PTT/PET parallel composite fiber crimp structure were determined[J]. Journal of Donghua Univer-sity (Natural Science), 2010, 36(1):30-36.
[7] ABBASI Marjan, KOTEK Richard. Effects of drawing process on crimp formation-ability of side-by-side bicomponent filament yarns produced from recycled, fiber-grade and bottle-grade PET[J]. The Journal of The Textile Institute, 2019, 110(10): 1439-1444.
doi: 10.1080/00405000.2019.1611523
[8] 林文静. PTT/PET并列复合短纤维的卷曲和力学性能研究[D]. 上海: 东华大学, 2010: 5-6.
LIN Wenjing. Crimp and mechanical properties of PTT/PET composite staple fibers[D]. Shanghai: Donghua University, 2010: 5-6.
[9] 李军令. 高保形PTMG-PBT/PET并列复合纤维的制备及其性能研究[D]. 上海: 东华大学, 2021: 22-23.
LI Junling. Preparation and properties of high confor-mation PTMG-PBT/PET composite fibers[D]. Shang-hai: Donghua University, 2021: 22-23.
[10] 周静宜, 张大省, 王春梅, 等. 并列复合纤维热收缩差异的形成与控制[J]. 合成纤维工业, 2015, 38(1): 7-10.
ZHOU Jingyi, ZHANG Dasheng, WANG Chunmei, et al. Formation and control of thermal shrinkage difference of parallel composite fibers[J]. China Synthetic Fiber Industry, 2015, 38(1): 7-10.
[11] 王宇, 吉鹏, 王朝生, 等. PEGT/PTT并列复合弹性纤维的制备及性能研究[J]. 合成纤维工业, 2020, 43(2): 19-25.
WANG Yu, JI Peng, WANG Chaosheng, et al. Preparation and properties of PEGT/PTT composite elastic fibers[J]. China Synthetic Fiber Industry, 2020, 43(2): 19-25.
[12] 张爱丽, 罗东, 林农, 等. 热塑性聚醚酯弹性体结晶行为的研究进展[J]. 合成纤维工业, 2010, 33(1): 35-38.
ZHANG Aili, LUO Dong, LIN Nong, et al. Research progress on crystallization behavior of thermoplastic polyether ester elastomers[J]. China Synthetic Fiber Industry, 2010, 33(1): 35-38.
[13] 严大东, 肖弘毅, 张兴华. 高分子片晶-无定形区界面自由能的理论研究[C]// 中国化学会2017全国高分子学术论文报告会摘要集. 成都: 中国化学会, 2017: 10.
YAN Dadong, XIAO Hongyi, ZHANG Xinghua. Theoretical study on the interface free energy of polymer platelets-amorphous region[C]//Chinese Chemical Cociety 2017 National Polymer Academic Papers Conference Abstracts Collection. Chengdu: Chinese Chemical Cociety, 2017: 10.
[14] 何崎, 范天翔, 李军令, 等. 热处理对PTMG-PBT/PET复合纤维性能的影响[J]. 合成纤维, 2021, 50(12): 1-4.
HE Qi, FAN Tianxiang, LI Junling, et al. Effect of heat treatment on properties of PTMG-PBT/PET composite fiber[J]. Synthetic Fiber in China, 2021, 50(12): 1-4.
[15] 齐勇进, 闵洁, 张玉梅, 等. 聚醚酯弹性纤维染色动力学和热力学研究[J]. 染料与染色, 2018, 55(6): 14-19.
QI Yongjin, MIN Jie, ZHANG Yumei, et al. Study on dyeing kinetics and thermodynamics of polyether ester elastic fiber[J]. Dyes and Dyeing, 2018, 55(6): 14-19.
[1] GAO Feng, SUN Yanlin, XIAO Shunli, CHEN Wenxing, LÜ Wangyang. Microstructure and properties of polyester composite fibers with different drafting ratios [J]. Journal of Textile Research, 2022, 43(08): 34-39.
[2] LI Mingming, CHEN Ye, LI Xia, WANG Huaping. Influence of spinning process on property of parallel composite polyester fiber [J]. Journal of Textile Research, 2019, 40(12): 16-20.
[3] YANG Fan, LIU Junhua, BIAN Angting, WANG Yanping, QIAN Qiyuan, NI Jianhua, XIA Yumin, HE Yong, WANG Yimin. Influence of heat treatment on structure and properties of thermotropic liquid crystalline polyarylate fiber [J]. Journal of Textile Research, 2019, 40(11): 9-12.
[4] LIU Bingqian, SHENG Dan, GONG Xiaobao, CAO Genyang, ZHANG Tao. Influence of wet/heat treatment on structure and properties of dog hair [J]. Journal of Textile Research, 2019, 40(01): 19-25.
[5] . Moisture absorption and liberation regularities of textile sizes [J]. Journal of Textile Research, 2016, 37(3): 72-77.
[6] YANG Xuhong;GU Junjing. Effect of heat treatment on microstructure and mechanical properties of bamboo viscose fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(1): 11-15.
[7] GUO Zhan-jun;CHEN Jian-yong;GUO Yu-hai;ZHANG Hua-peng;TANG Hong-yan. Effect of heat treatment on properties of PTFE drawing [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(6): 21-24.
[8] CAO YuTong;GAO Xiang-hua;HU Zuming;LIU Zhaofeng. Optimizing heat treatment process of PPTA fibers using uniform design [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(12): 1-3.
[9] XIAO Hong;LIU Jing;SHI Meiwu. Influence of duration of treatment and media on the properties of PET/PTT filaments [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(9): 16-19.
[10] XIAO Hong;SHI Meiwu;LIU Jing. Structures and properties of PET/PTT filament at different temperatures [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(8): 6-10.
[11] TANG Yiping;JIN Fujiang. 针织物染色上染率动力学模型 [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(7): 61-63.
[12] YANG Qingbin;WANG Rui;LIU Yixin;XUN Shan. Impact of heat treatment on mechanical properties of PLA fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(4): 47-50.
[13] SHEN Jiajia;CHEN Weiguo;LUO Xiaoju;WANG Jinyu;JI Shuren. Effect of dry-heat treatment on the structure and properties of AN-g-Casein fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(4): 10-13.
[14] YIN Ying;ZHENG Jin-huan;ZHANG Ling-ling;CHEN Wei-guo. Effect of heat treatments on structure and mechanical properties of PTT fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(11): 32-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!