Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 140-146.doi: 10.13475/j.fzxb.20210707907

• Apparel Engineering • Previous Articles     Next Articles

Balanced optimization of garment hybrid assembly line based on modularization

ZHENG Lu1, YAN Weixiong2, HU Jueliang3, HAN Shuguang3()   

  1. 1. High Fashion (China) Co., Ltd., Hangzhou, Zhejiang 311200, China
    2. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-07-29 Revised:2022-01-14 Online:2022-04-15 Published:2022-04-20
  • Contact: HAN Shuguang E-mail:dawn1024@zstu.edu.cn

Abstract:

Targeting at multi-variety, small-batch and short cycle features in garment production, a garment intelligent production scheduling algorithm based on modularization is proposed to facilitate rapid production of multiple garments on a hybrid assembly line. On the basis of garment modules, the joint optimization model was established including ordering production tasks and assigning modular garment production process. The target tracking genetic algorithm was designed to set up the model, to achieve the optimization of the production sequence and the automatic arrangement of the garment manufacturing process on the assembly line. Taking two similar shirts for examples, the smoothness index and line efficiency of the designed modular garment hybrid assembly line reach 3.359 and 97.9% respectively. Compared with single-piece flow production of small batch, the modular production has significantly improved the balance of the assembly line, providing theoretical guidance for the promotion of garment intelligent manufacturing and lean production.

Key words: modularization production, garment assembly line, assembly line balance, production order, production scheduling algorithm, garment intelligent prodution

CLC Number: 

  • TS941

Tab.1

Symbols description"

参数 表示含义
i 表示不同工序 ( i = 1,2 , , N )
j 表示1个循环中第j件服装,也表示第j个投产排序阶段 ( j = 1,2 , , t , , D )
l l款服装 ( l = 1,2 , , L )
C 生产节拍
SI 工作站平滑系数
π π的编制顺序进行工序分配方案( π = 1 , 2 , , Π)
T ( k , π ) π的编制方案下,第k个工作站的作业时间
M 在确定的生产节拍和工序时间下的理论最少工作站数
z ( π ) π的编制方案下,实际最少工作站数( π = 1,2 , , Π)
t i l l款服装工序i的作业时间
L 1个循环流程中生产L个款式服装
N 模块化服装的工序数量
d l 1个循环流程中,第l款服装的作业数量
D 1个循环流程中,所有款式服装数量,也表示D个阶段(1件服装为1个阶段)
q l 1个循环流程中第l款服装在总需求中的比例
w j l j个阶段(位置)投放第l款服装,取值为0或1
x i l k π π的编制方案下,第l款服装的第i个作业元素在工作站k上进行作业,取值为0或1
Y ( k , π ) π的编制方案下,工作站k是否有被分配工艺元素,取值0或1

Fig.1

GCA-GA algorithm flow"

Fig.2

Shirt drawing of style A(a) and B(b)"

Fig.3

Modular men's shirt process flow chart"

Tab.2

Line process arrangement scheme"

工作站
序号
B1款
工艺元素
A款
工艺元素
B2款
工艺元素
设备配置 工作站作业
时间/s
工作站空闲
时间/s
1 8,23 1,2,3,13 缝纫机、熨烫机、拷边机 142 2
2 1,2,24 4,5,23,24 缝纫机、熨烫机 144 0
3 14,15,16 1,2,3 缝纫机、熨烫机、拷边机 141 3
4 17,18,19 8,9 缝纫机、熨烫机 141 3
5 3,5,6,9 6,7 缝纫机、熨烫机、拷边机 138 6
6 7,10,11 5 缝纫机、拷边机 142 2
7 25,26 26 6,10 缝纫机、熨烫机 139 5
8 11,12,20,21,27,28 缝纫机、拷边机 140 4
9 29,30,31 缝纫机、锁眼机、钉钮机 142 2
10 7,11,12,20,23 缝纫机、熨烫机、拷边机 139 5
11 21,22,24,25,26,27,28 缝纫机、熨烫机 141 3
12 29,30,31 缝纫机、锁眼机、钉钮机 142 2
13 12,20,21,22,27,28 缝纫机、拷边机 141 3
14 29,30,31 缝纫机、锁眼机、钉钮机 142 2

Tab.3

GCA-GA optimization results"

投产排序
方式
种群数50,迭代次数200 种群数80,迭代次数500 种群数100,迭代次数1 000
工作站数
量/个
平滑系
数(SI)
编制效
率(LE)/%
工作站
数量/个
平滑系
数(SI)
编制效
率(LE)/%
工作站
数量/个
平滑系
数(SI)
编制效
率(LE)/%
A→A→A 14 7.897 96.0 14 7.611 96.0 14 6.861 96.0
B→B→B 15 10.536 95.0 15 9.893 95.0 15 7.501 95.0
A→B1→B2 15 13.181 91.4 14 4.000 97.9 14 4.504 97.9
B1→B2→A 15 12.869 91.4 14 3.723 97.9 14 3.443 97.9
B1→A→B2 14 3.761 97.9 14 3.625 97.9 14 3.359 97.9
[1] 黄珍珍, 莫碧贤, 温李红. 基于遗传算法及仿真技术的服装流水线平衡[J]. 纺织学报, 2020, 41(7): 154-159.
HUANG Zhenzhen, MOK Pikyin, WEN Lihong. Garment production line balance based on genetic algorithm and simulation[J]. Journal of Textile Research, 2020, 41(7): 154-159.
[2] 韩曙光, 颜伟雄, 胡觉亮. 模块化生产模式下的服装产品组合优化决策[J]. 纺织学报, 2021, 42(11):151-158.
HAN Shuguang, YAN Weixiong, HU Jueliang. Optimizaion decision of apparel product portfolio with modular production[J]. Journal of Textile Research, 2021, 42(11): 151-158.
[3] 于小利, 刘咏梅, 黄珍珍, 等. 面向在线个性化定制的婴幼儿连体衣模块化设计[J]. 东华大学学报(自然科学版), 2018, 44(5):734-741.
YU Xiaoli, LIU Yongmei, HUANG Zhenzhen, et al. Modular design of infant romper for online individual customization[J]. Journal of Donghua Univer-sity(Natural Science), 2018, 44(5): 734-741.
[4] 刘艳梅, 王花娥. 模块化的毛衫产品族设计及评价指标[J]. 纺织学报, 2016, 37(12):97-102.
LIU Yanmei, WANG Hua'e. Modularized product family design method of sweater and evaluation indexes[J]. Journal of Textile Research, 2016, 37(12): 97-102.
[5] SHEN X N, YAO X. Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems[J]. Information Sciences, 2015, 298: 198-224.
doi: 10.1016/j.ins.2014.11.036
[6] 苏军强, 刘国联, 金春来. 基于模块化生产的服装智能传输系统开发思路[J]. 纺织导报, 2012(1):91-92.
SU Junqiang, LIU Guolian, JIN Chunlai. An idea for intelligent garment transmission system based on modular production[J]. China Textile Leader, 2012(1): 91-92.
[7] 闫亦农, 刘立枝, 崔慧荣. 直线递进式服装吊挂生产流水线优化设计[J]. 丝绸, 2018, 55(11):67-72.
YAN Yinong, LIU Lizhi, CUI Huirong. Optimized design of linear progressive hanging production line for garment[J]. Journal of Silk, 2018, 55(11): 67-72.
[8] 张旭靖, 王立川, 陈雁. 基于遗传算法的服装缝制生产线平衡优化[J]. 纺织学报, 2020, 41(2):125-129.
ZHANG Xujing, WANG Lichuan, CHEN Yan. Balancing optimization of garment sewing assembly line based on genetic algorithm[J]. Journal of Textile Research, 2020, 41(2): 125-129.
[9] BABAZADEH H, ALAVIDOOST M H, ZARANDI M H F, et al. An enhanced NSGA-II algorithm for fuzzy bi-objective assembly line balancing problems[J]. Computers & Industrial Engineering, 2018, 123: 189-208.
doi: 10.1016/j.cie.2018.06.014
[10] MONDEN Y. Toyota production system: an integrated approach to just-in-time[M]. 4th ed. Boca Raton: CRC Press, 2011: 253-264.
[11] WANG T, FAN R, PENG Y, et al. Optimization on mixed-flow assembly u-line balancing problem[J]. Cluster Computing, 2018, 22(64): 8249-8257.
doi: 10.1007/s10586-018-1738-6
[12] 于昕辰, 曾培峰, 赵冉, 等. 基于蚁群算法的服装生产流水线作业平衡[J]. 东华大学学报(自然科学版), 2014, 40(4): 456-460.
YU Xinchen, ZENG Peifeng, ZHAO Ran, et al. Garment production assembly line balance based on ant colony algorithm[J]. Journal of Donghua Univer-sity(Natural Science), 2014, 40(4): 456-460.
[1] ZHANG Suning, WANG Ze, MA Dali. Simulation and optimization of Flexsim shirt assembly line based on improved ant colony algorithm [J]. Journal of Textile Research, 2021, 42(03): 155-160.
[2] SONG Ying, TIAN Hong, LI Jingyi. Simulation optimization of one-piece flow T-shirt assembly line based on Flexsim [J]. Journal of Textile Research, 2020, 41(01): 145-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!