Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 29-34.doi: 10.13475/j.fzxb.20210800106
• Fiber Materials • Previous Articles Next Articles
WANG Rui1,2, SI Yinsong3, LU Haohao3, GAO Shuang3, FU Yaqin3()
CLC Number:
[1] | 王瑞. 基于蚕丝纤维绿色加工的应用基础研究[D]. 杭州: 浙江理工大学, 2020: 13. |
WANG Rui. Basic research on the application of green processing of silk fibers[D]. Hangzhou: Zhejiang Sci-Tech University, 2020: 13. | |
[2] |
ZHAO C, OKADA H, ASAKAWA M, et al. Grafting methyl methacrylate onto silk via emulsion graft copolymerization using a diethylzinc complex initiator[J]. Green and Sustainable Chemistry, 2019, 9(4): 135-152.
doi: 10.4236/gsc.2019.94010 |
[3] | 张智辉, 沈一峰, 杨雷, 等. MAA/疏水性单体与蚕丝纤维的接枝共聚合反应[J]. 丝绸, 2013, 50(7): 1-4. |
ZHANG Zhihui, SHEN Yifeng, YANG Lei, et al. Graft copolymerization of MAA/hydrophobic monomer and silk fiber[J]. Journal of Silk, 2013, 50(7): 1-4. | |
[4] | 李婷, 孙晨晓, 朱兰, 等. 基于高效液相色谱法的桑蚕丝氨基酸定量分析及其增重鉴别的研究[J]. 江苏丝绸, 2021(2):35-39. |
LI Ting, SUN Xiaochen, ZHU Lan, et al. Quantitative analysis of amino acids and weight gain identification of mulberry silk by high performance liquid chromato-graphy[J]. Jiangsu Silk, 2021(2):35-39. | |
[5] | 钱红飞, 程双娟. 一种蚕丝接枝率的检测方法: ZL 201510303852.2[P]. 2015-11-04. |
QIAN Hongfei, CHENG Shuangjuan. A test method of silk grafting ratio: ZL 201510303852.2[P]. 2015-11-04. | |
[6] | 方帅军, 陈梦婕, 舒可人, 等. 基于DSC技术构建甲基丙烯酰胺接枝蚕丝的接枝率定量检测方法[J]. 丝绸, 2022, 59(1): 20-24. |
FANG Shuaijun, CHEN Mengjie, SHU Keren, et al. Quantitative detection method for the grafting rate of methylacrylamide grafted silk based on DSC tech-nology[J]. Journal of Silk, 2022, 59(1): 20-24. | |
[7] | 方帅军, 郑培晓, 程双娟, 等. 甲基丙烯酰胺接枝桑蚕丝接枝率的数学模型构建与定量分析[J]. 纺织学报, 2022, 43(2): 156-161. |
FANG Shuaijun, ZHENG Peixiao, CHENG Shuangjuan, et al. Establishment of mathematical model and quantitative analysis for grafting rate of methylacrylamide grafted silk[J]. Journal of Textile Research, 2022, 43(2): 156-161. | |
[8] |
DE A N R, RAMALHO F M G, COSTA L R, et al. Estimating hardness and density of wood and charcoal by near-infrared spectroscopy[J]. Wood Science and Technology, 2020, 55(1): 215-230.
doi: 10.1007/s00226-020-01232-y |
[9] | ANYIDOHO E K, TEYE E, AGBEMAFLE R, et al. Application of portable near infrared spectroscopy for classifying and quantifying cocoa bean quality para-meters[J]. Journal of Food Processing and Preservation, 2021, 45(5): 1-13. |
[10] |
DU W, ZHENG J, LI W, et al. Efficient recognition and automatic sorting technology of waste textiles based on online near infrared spectroscopy and convolutional neural network[J]. Resources, Conservation and Recycling, 2022. DOI: 10.1016/j.resconrec.2022.106157.
doi: 10.1016/j.resconrec.2022.106157 |
[11] |
CURA K, RINTALA N, KAMPPURI T, et al. Textile recognition and sorting for recycling at an automated line using near infrared spectroscopy[J]. Recycling, 2021. DOI: 10.3390/recycling6010011.
doi: 10.3390/recycling6010011 |
[12] |
BLANCO M, PAGÈS J. Classification and quantitation of finishing oils by near infrared spectroscopy[J]. Analytica Chimica Acta, 2002, 463(2): 295-303.
doi: 10.1016/S0003-2670(02)00382-3 |
[13] |
CHEN H, TAN C, LIN Z. Quantitative determination of the fiber components in textiles by near-infrared spectroscopy and extreme learning machine[J]. Analytical Letters, 2019, 53(6): 844-857.
doi: 10.1080/00032719.2019.1683742 |
[14] | 魏子涵, 李文霞, 杜宇君, 等. 织物傅里叶变换衰减全反射红外光谱库的建立及应用[J]. 纺织学报, 2019, 40(8): 64-68. |
WEI Zihan, LI Wenxia, DU Yujun, et al. Establishment and application of fabrics attenuated total reflection fourier transform infrared spectroscopy spectrum library[J]. Journal of Textile Research, 2019, 40(8): 64-68. | |
[15] |
HUANG J, YU C. Fiber content determination of linen/viscose blends using NIR spectroscopy[J]. Bioresources, 2020, 15(2): 3006-3016.
doi: 10.15376/biores.15.2.3006-3016 |
[16] | 江崃, 朱小行, 沈一峰, 等. 过硫酸钾连二亚硫酸钠氧化还原体系在蚕丝接枝增重上的应用[J]. 纺织学报, 2013, 34(1): 50-55. |
JIANG Lai, ZHU Xiaoxing, SHEN Yifeng, et al. Application of potassium persulfate/sodium dithionate redox system in graft weighting of silk[J]. Journal of Textile Research, 2013, 34(1): 50-55. | |
[17] | 马月. 近红外、拉曼光谱快速无损检测技术在蚕桑产品中的应用[D]. 镇江: 江苏科技大学, 2020: 58-67. |
MA Yue. Application of near-infrared and Raman spectroscopy rapid nondestructive testing technology in sericulture products[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020: 58-67. | |
[18] | 宋悦. 基于近红外光谱分析技术的纺织物纤维成分检测方法研究[D]. 太原: 中北大学, 2020: 34-38. |
SONG Yue. Study on the detection method of textile fiber composition based on near infrared spectro-scopy[D]. Taiyuan: North University of China, 2020: 34-38. | |
[19] | 韦树琛, 丁欣, 李文霞, 等. 废旧聚酯纤维制品近红外定量分析模型的建立及验证[J]. 纺织学报, 2018, 39(7): 63-68. |
WEI Shuchen, DING Xin, LI Wenxia, et al. Model establishment and validation of waste polyester fiber products based on near infrared quantitative analysis[J]. Journal of Textile Research, 2018, 39(7): 63-68. |
[1] | YU Yangxiao, LI Feng, WANG Yuyu, WANG Shanlong, WANG Jiannan, XU Jianmei. Preparation and properties of polypyrole/silk fibroin conductive nanofiber membranes [J]. Journal of Textile Research, 2022, 43(10): 16-23. |
[2] | CHENG Lüzhu, WANG Zongqian, SHENG Hongmei, ZHONG Hui, XIA Liping. Comparison of test methods for permethrin content in polyamide fabrics [J]. Journal of Textile Research, 2022, 43(09): 143-148. |
[3] | LIU Jiao, CHEN Shaojuan, WU Shaohua. Preparation and properties of silk fibroin/poly(l-lactic acid) nanofiber yarns-based tendon patches [J]. Journal of Textile Research, 2022, 43(08): 60-66. |
[4] | LI Aiyuan, SHI Xinyu, YUE Wanfu, YOU Weiyun. Preparation and property of silk fibroin based hydrogel scaffolds [J]. Journal of Textile Research, 2022, 43(06): 44-48. |
[5] | GU Zhanghong, YAO Xiang, WANG Jinsi, ZHANG Yaopeng. Preparation and properties of single-layer and parallel silk fibroin fiber patterns with cell adhesion contrast properties [J]. Journal of Textile Research, 2022, 43(05): 1-6. |
[6] | LEI Caihong, YU Linshuang, ZHU Hailin, ZHENG Tao, CHEN Jianyong. Hemostasis properties of silk fibroin materials under different types of hydrolysis [J]. Journal of Textile Research, 2022, 43(04): 15-19. |
[7] | ZHANG Tao, WANG Fuping, CHEN Guobao, WU Jiyu, PANG Yani, CHEN Zhongmin. Preparation and performance of chitosan-based antibacterial gel [J]. Journal of Textile Research, 2022, 43(03): 71-77. |
[8] | FANG Shuaijun, ZHENG Peixiao, CHENG Shuangjuan, LI Huanhuan, QIAN Hongfei. Establishment of mathematical model and quantitative analysis for grafting rate of methylacrylamide grafted silk [J]. Journal of Textile Research, 2022, 43(02): 156-161. |
[9] | YAO Ruotong, ZHAO Jingyuan, YAN Yixin, DUAN Lirong, WANG Tian, YAN Jia, ZHANG Shujun, LI Gang. Fabrication of novel biodegradable braided nerve grafts for nerve regeneration [J]. Journal of Textile Research, 2022, 43(02): 125-131. |
[10] | MIN Xiaobao, PAN Zhijuan. Quality and performance of biomass fiber/pineapple leaf fiber multi-component blended yarn [J]. Journal of Textile Research, 2022, 43(01): 74-79. |
[11] | LI Wei, ZHANG Zhengqiao, XU Zhenzhen, ZHANG Chaohui. Preparation and sizing properties of amphiphilic diblock grafted starch sizing agent [J]. Journal of Textile Research, 2022, 43(01): 141-146. |
[12] | WANG Songli, WANG Meilin, ZHOU Xiang, LIU Zunfeng. Research progress of artificial spider silk and imitation spider silk fiber [J]. Journal of Textile Research, 2021, 42(12): 174-179. |
[13] | PENG Xi, TU Yongjian, ZHOU Jiu. Design principle and method for gradient weft-backed structure with 2∶1 weft arrangement [J]. Journal of Textile Research, 2021, 42(12): 63-69. |
[14] | JIANG Yulin, WANG Hui, ZHANG Keqin. Research progress of silk fibroin-based hydrogel bioinks for 3D bio-printing [J]. Journal of Textile Research, 2021, 42(11): 1-8. |
[15] | SUN Yusheng, ZUO Baoqi. Research progress of high-molecular polymer material for bone defect repair [J]. Journal of Textile Research, 2021, 42(08): 175-184. |