Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 172-178.doi: 10.13475/j.fzxb.20210800207

• Machinery & Accessories • Previous Articles     Next Articles

Modeling and response of variable longitudinal nonlinear vibration of rapier belt driven by variable speed weft insertion patterns

YUAN Ruwang1,2(), CHE Yicheng1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tiangong University, Tianjin 300387, China
  • Received:2021-08-02 Revised:2022-07-27 Online:2022-11-15 Published:2022-12-26

Abstract:

This paper mainly studies the influence of the longitudinal vibration of the rapier belt driven by different variable-speed weft insertion patterns on the weft insertion process. For designing a variable speed weft insertion pattern, a parametric modeling method of weft insertion based on cosine series was proposed. In parallel, for the nonlinear dynamics of variable length and variable speed moving rapier belt under the action of driving force, the forced vibration model of variable length rapier belt was established based on the finite element method. The system mass, stiffness and damping terms were found to be related to the length of rapier belt. The effects of weft insertion pattern on the motion characteristics, longitudinal vibration and process of rapier belt under different acceleration parameters were analyzed. The results show that the initial acceleration and peak negative acceleration of rapier belt are the key parameters affecting the weft insertion process. The peak value of the speed and acceleration of the rapier belt, the time of entering the shed and the peak value of the internal stress would decrease with the increase of the initial acceleration. When the rapier belt holds the weft and enters the shed, the vibration increases with the increase of the peak value of negative acceleration. Reasonable regulation of key parameters can coordinate the process timing and dynamic characteristics of beat-up, weft insertion and shedding.

Key words: rapier belt, longitudinal vibration, variable speed weft insertion, variable length, nonlinear

CLC Number: 

  • TS103

Fig.1

Sketch of weft insertion of sword belt"

Fig.2

Sword head displacement diagram"

Fig.3

Finite element model of sword belt at different times"

Fig.4

Deformation diagram of unit stress"

Fig.5

Element constitutive model"

Fig.6

Motion characteristics of weft insertion with different f″(0). (a) Displacement; (b) Speed; (c) Acceleration"

Tab.1

Weft insertion characteristic values under different f″(0)"

f″(0) θk/(°) vmax/( m·s-1) amax/( m·s-2)
0 60 58.6 2489
0.2 50 49.2 1896
0.4 40 40.4 1623

Fig.7

Displacement response under different f″(0)"

Fig.8

Speed response under different f″(0)"

Fig.9

Acceleration response under different f″(0)"

Fig.10

Acceleration response under different f″(1)"

Tab.2

Vibration characteristics under different f″(1)"

f″(1) θmax/(°) Δx″/( m·s-2)
θk=60° θs=35°
-0.65 115 ±188 14
-0.45 101 ±207 18
-0.25 91 ±235 41
[1] 张雷, 孔佳元, 雷炳杰, 等. 变导程螺旋引纬机构剑杆位移曲线的设计[J]. 纺织学报, 2017, 38(4):111-126.
ZHANG Lei, KONG Jiayuan, LEI Bingjie, et al. Design of displacement diagram for rapier in variable lead screw weft insertion mechanism[J]. Journal of Textile Research, 2017, 38(4): 111-126.
[2] ZHANG L. The effect of the components' material properties to the conjugate cam weft insertion mechanism with clearance[J]. Materials Research Innovations, 2015, 19(9): 245-249.
[3] 俞成涛. 共轭凸轮引纬设计[J]. 上海纺织科技, 2018(10):13-15.
YU Chengtao. Design of conjugate cam weft insertion mechanism[J]. Shanghai Textile Science & Technology, 2018(10):13-15.
[4] RECEP Eren, MESRUR Erturk. Kinematic design and motion analysis of spatial rapier drive mechanisms used in weaving machines[J]. Textile Research Journal, 2014, 84(19): 2065-2073.
doi: 10.1177/0040517514534754
[5] 唐朝飞. 挠性剑杆织机剑头剑杆带磨损因素探讨[J]. 纺织器材, 2014, 41(2):8-10.
TANG Chaofei. Approach into the abrasion factors with the rapier head and rapier tape on the flexible rapier loom[J]. Textile accessories, 2014, 41(2):8-10.
[6] 潘宏根. 剑杆的弹性振动[J]. 东华大学学报(自然科学版), 1987, 13(5):135-139.
PAN Honggen. The elastic vibrating of the rapier in rapier looms[J]. Journal of Donghua University (Naturd Science), 1987, 13(5): 135-139.
[7] 马国亮. 徐明龙. 末端质量作用下变长度轴向运动梁的振动特性[J]. 应用数学和力学, 2015, 36(9):897-904.
MA Guoliang. XU Minglong. Vibration characteristics of an axially moving variable length beam with a tip mass[J]. Applied Mathematics and Mechanics, 2015, 36(9):897-904.
[8] WANG L, HU Z, ZHONG Z. Non-linear dynamical analysis for an axially moving beam with finite deformation[J]. International Journal of Non-Linear Mechanics, 2013, (54): 5-21.
[9] PIOVAN M T, SAMPAIO R. Vibrations of axially moving flexible beams made of functionally graded materials[J]. Thin-Walled Structures, 2008, 46(2): 112-121.
doi: 10.1016/j.tws.2007.08.031
[10] 李成, 姚林泉. 轴向运动超薄梁的非局部动力学分析[J]. 工程力学, 2013, 30(4): 367-372.
LI Cheng, YAO Linquan. Nonlocal dynamical analysis on axially travelling ultra-thin beams[J]. Engineering Mechanics, 2013, 30(4): 367-372.
[11] CHEN L Q, TANG Y Q, LIM C W. Dynamic stability in parametric resonance of axially accelerating viscoelastic Timoshenko beams[J]. Journal of Sound and Vibration, 2010, 329(5): 547-565.
doi: 10.1016/j.jsv.2009.09.031
[12] 吴娟, 钱有华. 一类弦-梁耦合非线性振动系统的动力学数值模拟研究[J]. 动力学与控制学报, 2018, 16(5):403-410.
WU Juan, QIAN Youhua. Numerical simulation research on dynamics of a string-beam coupled nonlinear vibration system[J]. Journal of Dynamics and Control, 2018, 16(5):403-410.
doi: 10.1016/0165-1889(92)90043-E
[13] TUMER S T. Filling insertion by rapier: a kinematic model[J]. Textile Research Journal, 1988, 58(12): 726-734.
doi: 10.1177/004051758805801207
[14] 李夏云. 陈传淼. 用龙格-库塔法求解非线性方程组[J]. 数学理论与应用, 2008, 28(2):62-65.
LI Xiayun, CHEN Chuanmiao. Solving nonliner quations by using runge-kutta method[J]. Mathematical Theory and Applications, 2008, 28(2):62-65.
[15] MOSAAD A F. Vibration control and suppression of an axially moving string[J]. Journal of Vibration and Control, 2011, 18(1):58-75.
doi: 10.1177/1077546311404727
[1] . Mechanical analysis of flame retardant three-strand yarn of polyester / aramid fiber / Poly(p-phenylene-2,6-benzo-bisoxazole) fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 28-32.
[2] . 3-D simulation of weft knitted fabric based on improved mass-spring model [J]. Journal of Textile Research, 2015, 36(02): 111-115.
[3] . Mechanical behavior of woven fabric reinforced flexible composites under repeated loading [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(1): 51-0.
[4] . Transverse nonlinear-vibration of axially moving yarn strand [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(12): 37-0.
[5] LIAN jun;GU Bohong. Numerical simulation of dynamic performance of three-dimensional braided composites [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(1): 41-45.
[6] WANG Lan;JIN Fujiang. 福建省科技计划重点项目(2006H0031) [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(8): 78-80.
[7] SHEN Danfeng;YE Guoming. Analyzing the vibrating characteristics of warp yarns during weaving [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(5): 41-46.
[8] JIA Guixi;JIA Shuya;CHE Xuezhe. Automatic metering and dosing control system based on PLC [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(2): 85-88.
[9] HE Chao-ying~;LI Dong-gao~. Nonlinear property on coupled heat and moisture transfer in clothing ergonomics system [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(3): 48-50.
[10] BI Zhi-yue;YUAN Yan-hong;LI Zhi-xiang;ZHU Zhi-chao. Principles analysis and discussion of TOYOTA electronic shedding mechanism [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(3): 63-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .