Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (12): 35-41.doi: 10.13475/j.fzxb.20210800307

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of multilayer sound absorption materials based on waste polyphenylene sulfide filter materials

ZHANG Shucheng, XING Jian, XU Zhenzhen()   

  1. Anhui Province International Cooperation Research Center of Textile Structure Composite Materials, Anhui Polytechnic University, Wuhu, Anhui 241000
  • Received:2021-08-02 Revised:2022-08-30 Online:2022-12-15 Published:2023-01-06
  • Contact: XU Zhenzhen E-mail:xuzhenzhen@ahpu.edu.cn

Abstract:

In order to recycle the waste polyphenylene sulfide(PPS)filter bag, it was treated by alkali washing, and then the multi-layer sound-absorbing composite material was prepared by combining the alkali washed filter bag and polyurethane (PU)film of different thickness and specification by hot air bonding and molding processing method. With scanning electron microscope, vertical combustion tester, electronic fabric strength machine and noise vibration test system, the morphological characteristics, flame retardancy, mechanical properties, sound absorption and insulation properties of PPS+PU+PPS and PPS+PU+PPS+PU+PPS were characterized. The results show that a small amount of dust particles remain on the surface of the alkali washed filter bag, but there was no trace of fiber damage and fracture. There were more pores between fibers, and the pores between composite fibers were reduced with a densified interior. Compared with the single-layer PPS filter material, the flame retardancy of the treated composite remained to be satisfactory. For the same structure, its mechanical properties were positively correlated with the thickness of PU film. For the two structures, The sound absorption coefficient shows the same change characteristics, and its size is negatively correlated with the film thickness, up to 0.27 in the high-frequency stage. However, the transmission loss is negatively correlated with the film thickness, and the PPS+PU+PPS+PU+PPS structure is up to 41 dB in the high-frequency stage.

Key words: waste PPS filter bag, alkali washing treatment, hot air bonding molding, multilayer sound absorbing composite, flame retardancy, mechanical property, sound absorption and insulation performance

CLC Number: 

  • TS155

Fig.1

Tensile property test sample specification"

Fig.2

Bursting property test sample specification"

Fig.3

SEM images of PPS filter bag and composite material. (a) Surface morphology of PPS filter bag(×200);(b) Surface morphology of composites(×100);(c) Section shape of PPS filter bag(×150);(d) Cross section morphology of composite materials(×35)"

Tab.1

Test results of flame retardancy of different materials"

试样 续燃时间/s 阴燃时间/s 损毁长度/mm
单层PPS滤袋 0.920 0.486 4.522
单层PU膜 3.112 1.868 19.362
3层试样 1.476 0.850 6.388
5层试样 1.182 0.780 5.688

Tab.2

Thickness test results of composite materials widifferent structuresmm"

试样 不同厚度PU膜下复合材料厚度
0.05 mm 0.1 mm 0.2 mm
3层试样 2.827 2.854 2.864
5层试样 4.258 4.310 4.318

Tab.3

Surface density test results of composite materials with different structureskg/m2"

试样 不同厚度PU膜下复合材料面密度
0.05 mm 0.1 mm 0.2 mm
3层试样 1.373 1.462 1.608
5层试样 2.172 2.286 2.482

Tab.4

Test results of longitudinal and latitudinal breaking strength of composite materials with different structureskN"

试样 不同厚度PU膜下复合材料断裂强力
0.05 mm 0.1 mm 0.2 mm
3层试样 纵向 0.251 5 0.252 5 0.261 7
横向 0.353 7 0.374 5 0.392 5
5层试样 纵向 0.503 7 0.511 0 0.520 6
横向 0.534 1 0.544 8 0.550 1

Tab.5

Data of longitudinal and latitudinal elongation at break of composites with different structures%"

试样 不同厚度PU膜下复合材料断裂伸长率
0.05 mm 0.1 mm 0.2 mm
3层试样 纵向 11.46 12.46 13.30
横向 19.40 20.02 20.74
5层试样 纵向 15.99 16.63 17.89
横向 20.56 21.06 22.60

Tab.6

Bursting strength test results of composite materials with different structureskN"

试样 不同厚度PU膜下复合材料顶破强力
0.05 mm 0.1 mm 0.2 mm
3层试样 1.0567 1.1238 1.1773
5层试样 1.5077 1.5943 1.7044

Tab.7

Test results of bursting deformation of composite materials with different structuresmm"

试样 不同厚度PU膜下复合材料顶破变形量
0.05 mm 0.1 mm 0.2 mm
3层试样 22.203 22.619 23.452
5层试样 22.349 22.818 25.534

Fig.4

Comparison of sound absorption properties of composite materials with different structures. (a) Single layer PPS, single layer PU film with different thickness;(b)PPS+PU+PPS;(c)PPS+PU+PPS+PU+PPS"

Fig.5

Comparison of sound insulation performance of composite materials with different structures. (a) Single layer PPS, single layer PU film with different thickness;(b)PPS+PU+PPS;(c)PPS+PU+PPS+PU+PPS"

[1] 相鹏伟, 姜春阳, 戚晓冰, 等. 聚苯硫醚长丝的研究现状及其应用进展[J]. 合成纤维工业, 2018, 41(6): 54- 58.
XIANG Pengwei, JIANG Chunyang, QI Xiaobing, et al. Research status and application progress of PPS filament[J]. Synthetic Fiber Industry, 2018, 41 (6): 54 - 58.
[2] 古俊飞, 徐辉, 周冠辰, 等. PPS无基布除尘滤料的性能研究[J]. 化纤与纺织技术, 2018, 47(4): 11-16.
GU Junfei, XU Hui, ZHOU Guanchen, et al. Study on the performance of PPS filter media without base cloth[J]. Chemical Fiber and Textile Technology, 2018, 47(4): 11-16.
[3] 杨振生, 潘浩男, 李春利, 等. 高性能聚苯硫醚过滤材料研究进展[J]. 化工新型材料, 2019, 47(10): 216-223.
YANG Zhensheng, PAN Haonan, LI Chunli, et al. Research progress of high performance polyphenylene sulfide filter materials[J]. New Chemical Materials, 2019, 47 (10): 216-223.
[4] 白媛, 马新安, 杨家密. 耐高温除尘过滤材料的研发现状及趋势[J]. 棉纺织工业, 2019, 47(10): 78-81.
BAI Yuan, MA Xin'an, YANG Jiami. Research and development status and trend of high temperature resistant dust removal filter materials[J]. Cotton Textile Industry, 2019, 47 (10): 78-81.
[5] LI Tao, LIU Meng, DUAN Yufeng, et al. Performance and reaction mechanism for low-temperatur NOx catalytic synergistic Hg0 oxidation of catalytic polyphenylene sulfide filter materials[J]. Asia-Pacific Journal of Chemical Engineering, 2020.DOI:10.1002/apj.2403.
doi: 10.1002/apj.2403
[6] LI Shihang, ZHOU Fubao, WANG Fei, et al. Application and research of dry-type filtration dust collection technology in large tunnel construction[J]. Advanced Powder Technology, 2017, 28 (12): 3213-3221.
doi: 10.1016/j.apt.2017.10.003
[7] MOHAMMAD I F R, KEIYA I, KAZUKI U, et al. A continuous-flow exposure method to determine degradation of polyphenylene sulfide non-woven bag-filter media by NO2 gas at high temperature[J]. Advanced Powder Technology, 2019, 30(12): 2881-2889.
doi: 10.1016/j.apt.2019.08.032
[8] 曾晓芳. 燃煤电厂废弃滤袋的回收利用[J]. 节能与环保, 2017(9): 71-73.
ZENG Xiaofang. Recycling of waste filter bags in coal-fired power plants[J]. Energy Conservation and Environmental Protection, 2017(9): 71-73.
[9] 倪箐, 魏峰, 张明昌, 等. 废旧滤袋来源及回收再利用方法[J]. 产业用纺织品, 2018, 36(9): 29-32.
NI Qing, WEI Feng, ZHANG Mingchang, et al. Sources and recycling methods of waste filter bags[J]. Industrial Textiles, 2018, 36 (9): 29-32.
[10] 叶晋浦. 燃煤电厂废旧滤袋的回收再利用概述[J]. 纺织科学研究, 2019(11): 74-76.
YE Jinpu. Overview of waste filter bag recycling in coal-fired power plant[J]. Textile Science Research, 2019(11): 74-76.
[11] THOMAS M M, FRANK P S, SEBGSTIAN S, et al. Environmental Noise and the Cardiovascular System[J]. Journal of the American College of Cardiology, 2018, 71(6): 688-697.
doi: S0735-1097(17)41930-9 pmid: 29420965
[12] KIM K, SHIN J, OH M, et al. Economic value of traffic noise reduction depending on residents' annoyance level[J]. Environmental Science and Pollution Research, 2019, 26: 7243-7255.
doi: 10.1007/s11356-019-04186-2
[13] ZACHARY A C, KEVIN G, LUCIA A, et al. A review of the environmental parameters necessary for an optimal sleep environment[J]. Building and Environment, 2018, 132: 11-20.
doi: 10.1016/j.buildenv.2018.01.020
[14] 林希宁. 玄武岩纤维制备吸音/隔音复合材料的研究[D]. 广州: 广东工业大学, 2012:1-39.
LIN Xining. Study on the preparation of sound absorption/ sound insulation composite materials with basalt fiber[D]. Guangzhou: Guangdong University of Technology, 2012:1-39.
[15] QUOC B T, REN O C, PHUC T T, et al. Recycling of waste tire fibers into advanced aerogels for thermal insulation and sound absorption applications[J]. Journal of Environmental Chemical Engineering, 2020. 10.1016/j.jece.2020.104279.
doi: 10.1016/j.jece.2020.104279
[16] 马学乐, 刘亚. 噪音污染及吸音材料的发展[J]. 山东纺织技, 2016, 57(5): 51-53.
MA Xuele, LIU Ya. Noise pollution and development of sound absorbing materials[J]. Shandong Textile Science and Technology, 2016, 57 (5): 51-53.
[17] 李俊丽, 谭治永, 修传胜. 多孔吸音材料在扬声器系统中的研究进展[J]. 广东化工, 2018, 45(11): 178-179.
LI Junli, TAN Zhiyong, XIU Chuansheng. Research progress of porous sound-absorbing materials in loudspeaker system[J]. Guangdong Chemical Industry, 2018, 45 (11): 178-179.
[18] 张书诚, 邢剑, 徐珍珍. 废旧聚苯硫醚滤料的结构与性能研究[J]. 武汉纺织大学学报, 2021, 34(2): 33-38.
ZHANG Shucheng, XING Jian, XU Zhenzhen. Study on structure and performance of waste polyphenylene sulfide filter material[J] Journal of Wuhan Textile University, 2021, 34 (2): 33-38.
[19] 张凌昊, 江贵长, 张德浩, 等. 聚酯型聚氨酯薄膜的制备及性能研究[J]. 包装工程, 2019, 40(19): 158-163.
ZHANG Linghao, JIANG Guichang, ZHANG Dehao, et al. Preparation and properties of polyester polyurethane film[J]. Packaging Engineering, 2019, 40 (19): 158-163.
[20] 李菲, 江贵长, 张凌昊, 等. 聚碳酸酯型聚氨酯薄膜的制备及性能研究[J]. 包装工程, 2019, 40(15): 98-103.
LI Fei, JIANG Guichang, ZHANG Linghao, et al. Preparation and properties of polycarbonate polyurethane film[J]. Packaging Engineering, 2019, 40 (15): 98-103.
[21] 王昭. 熔喷非织造布结构参数与隔音性能的关系[D]. 上海: 东华大学, 2012:1-49.
WANG Zhao. Relationship between structural parameters and sound insulation properties of meltblown non-wovens[D]. Shanghai: Donghua University, 2012:1-49.
[1] WANG Shudong. Structure and mechanical properties of three-dimensional porous biodegradable polymer artificial esophageal scaffold [J]. Journal of Textile Research, 2022, 43(12): 16-21.
[2] ZHANG Zhiying, WANG Yiqiu, SUI Jianhua. Study of hollow honeycomb molded composites reinforced by ultra high molecular weight polyethylene fabrics [J]. Journal of Textile Research, 2022, 43(11): 81-87.
[3] CHEN Kang, CHEN Gaofeng, WANG Qun, WANG Gang, ZHANG Yumei, WANG Huaping. Influence of heat-treatment tension in post-processing on structural properties of high modulus low shrinkage industrial polyester fibers [J]. Journal of Textile Research, 2022, 43(10): 10-15.
[4] CHEN Junxian, LI Weiping, FU Qixuan, FENG Xinxing, ZHANG Hua. Preparation and properties of aramid/flame retardant viscose/flame retardant polyamide blended fabrics [J]. Journal of Textile Research, 2022, 43(09): 107-114.
[5] GAO Feng, SUN Yanlin, XIAO Shunli, CHEN Wenxing, LÜ Wangyang. Microstructure and properties of polyester composite fibers with different drafting ratios [J]. Journal of Textile Research, 2022, 43(08): 34-39.
[6] SUN Ying, LI Duanxin, YU Yang, CHEN Jialin, FAN Wanyue. Degumming of hemp fibers using Fenton method and fiber properties [J]. Journal of Textile Research, 2022, 43(08): 95-100.
[7] XIONG Yonghui, WANG Dong, DU Changsen, FU Shaohai. Preparation of aqueous dispersion system of bisneopentyl glycol dithiopyrophosphate and its application in flame-retardant viscose fiber [J]. Journal of Textile Research, 2022, 43(07): 22-28.
[8] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[9] LI Na, WANG Xiao, LI Zhenbao, LI Qian, DU Bing. Preparation and properties of photografted flame-retardant cotton fabrics with modified adenine nucleotide [J]. Journal of Textile Research, 2022, 43(07): 97-103.
[10] HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28.
[11] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[12] SUN Huanwei, ZHANG Heng, CUI Jingqiang, ZHU Feichao, WANG Guofeng, SU Tianyang, ZHEN Qi. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process [J]. Journal of Textile Research, 2022, 43(06): 86-93.
[13] ZHAO Bobo, WANG Liang, LI Jingyu, WAN Gang, XIA Zhaopeng, LIU Yong. Preparation and properties of hexamethylenetetramine cross-linked phenolic fibers [J]. Journal of Textile Research, 2022, 43(05): 57-62.
[14] SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73.
[15] FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!