Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 37-43.doi: 10.13475/j.fzxb.20210800907

• Fiber Materials • Previous Articles     Next Articles

Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber

CHEN Yong1, WU Jing1,2,3(), WANG Chaosheng1, PAN Xiaohu4, LI Naixiang4, DAI Junming4, WANG Huaping1   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. Engineering Research Center of Technical Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    4. Sinopec Yizheng Chemical Fibre Co., Ltd., Yangzhou, Jiangsu 211900, China
  • Received:2021-08-02 Revised:2021-11-22 Online:2022-02-15 Published:2022-03-15
  • Contact: WU Jing E-mail:wuj@dhu.edu.cn

Abstract:

In order to study the spinnability and fiber degradation of biodegradable poly(butylene adipate-co-terephthalate) (PBAT), biodegradable PBAT fiber was prepared using a two-step method involving melt spinning and drafting. The effects of spinning temperature and drafting ratio on the crystallinity, moisture regain and mechanical properties of PBAT fiber were studied, and the degradation properties of PBAT fiber in different environments were compared and analyzed. The results show that the optimum spinning temperature of PBAT was 260 ℃, and with the increase of drafting ratio, the breaking strength, crystallinity and orientation of PBAT fiber increased rapidly, while the elongation at break decreased. It was found that the abiotic cold and dry environments had the least influence on the properties of PBAT fibers, where the fiber strength decreased by only 3.6% after one month storage under such a circumstance. Under biological conditions, on the other hand, the influence of soil was more obvious compared to enzymatic hydrolysis and hydrolysis, where the crystallinity of PBAT fiber decreased from 34.45% to 19.36%.

Key words: poly(butylene adipate-co-terephthalate), environmental degradation performance, bio-based fiber, spinnability, mechanical property

CLC Number: 

  • TQ342

Tab.1

Preparation process parameters of PBAT fiber"

螺杆温度/℃ 纺丝温
度/℃
纺丝速度/
(m·min-1)
喷丝板
参数
Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区
255 258 260 260 260 800 36×0.3
×0.9

Tab.2

1H NMR analysis data of chip PBAT"

BT段含
量/%
BA段含
量/%
BT段序
列长度
BA段序
列长度
无规度
46.8 53.2 1.80 2.21 1.008

Tab.3

Spinning of chip at different temperatures"

纺丝温度/℃ 纺丝情况 纺丝性
250 硬头丝
260 较好
270 断丝多
280 不可纺

Tab.4

Mechanical properties of PBAT fibers with different drafting ratios"

牵伸
倍数
线密度/
dtex
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
1.4 262.38 1.15 186.6
1.7 257.74 1.25 170.4
2.0 235.30 1.38 164.4
2.3 189.46 1.69 133.7
2.5 139.60 2.24 66.8

Tab.5

Influence of different drafting rates on PBAT fibers"

牵伸
倍数
声速取向因子/
(km·s-1)
结晶
度/%
回潮
率/%
1.4 0.402 31.43 1.46
1.7 0.431 31.73 1.33
2.0 0.462 35.85 1.13
2.3 0.576 41.67 0.81

Fig.1

XRD patterns of fibers at different drafting rates"

Fig.2

Effects of abiotic environmental factors on fiber fracture strength(a) and elongation at break (b)"

Fig.3

Effects of degradation time on fiber fracture strength(a) and elongation at break (b)"

Fig.4

Sueface SEM images of samples after 4 weeks of degradation. (a) Undegraded fibers;(b)Degradation in Garden soil;(c)Neutral hydrolysis degradation;(d)Neutral enzymatic degardation"

Fig.5

Effect of degradation period on crystallinity"

[1] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017. DOI: 10.1126/sciadv.1700782.
doi: 10.1126/sciadv.1700782
[2] 周大旺, 乌婧, 杨建平, 等. 纤维微塑料的研究现状及其削减策略[J]. 纺织学报, 2021, 42(6): 8-17.
ZHOU Dawang, WU Jing, YANG Jianping, et al. Research progress of fibrous microplastics and mitigation strategies[J]. Journal of Textile Research, 2021, 42(6): 8-17.
[3] 国家发展和改革委员会. 国家发展改革委生态环境部关于进一步加强塑料污染治理的意见[EB/OL]. [2020-01-19]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202001/t20200119_1219275.html?code=&state=123.
National Developmennt and Reform Commission. Opinions of national development and reform commission, ministry of ecology and environment on further strengthening the control of plastic pollution [EB/OL]. [2020-01-19]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202001/t20200119_1219275.html?code=&state=123.
[4] ABAYOMI O A, RANGE P, ALGHOUTI M A, et al. Microplastics in coastal environments of the arabian gulf[J]. Marine Pollution Bulletin, 2017, 124(1): 181-188.
doi: 10.1016/j.marpolbul.2017.07.011
[5] THUSHARI G, SENEVIRATHNA J, YAKUPITIYAGE A, et al. Effects of microplastics on sessile invertebrates in the eastern coast of Thailand: an approach to coastal zone conservation[J]. Marine Pollution Bulletin, 2017, 124(1): 349-355.
doi: 10.1016/j.marpolbul.2017.06.010
[6] LAW K L, THOMPSON R C. Microplastics in the seas[J]. Science, 2014, 345(6193): 144-145.
doi: 10.1126/science.1254065
[7] ALBERTSSON A C, HAKKARAINEN M. Designed to degrade Suitably designed degradable polymers can play a role in reducing plastic waste[J]. Science, 2017, 358(6365): 872-873.
doi: 10.1126/science.aap8115
[8] WEI X F, BOHLEN M, LINDBLAD C, et al. Microplastics generated from a biodegradable plastic in freshwater and seawater[J]. Water Research, 2021, 198(6): 117-123.
[9] 欧阳春平, 卢昌利, 郭志龙, 等. 聚对苯二甲酸-己二酸丁二醇酯(PBAT)合成工艺技术研究进展与应用展望[J]. 广东化工, 2021, 48(6): 47-48.
OUYANG Chunping, LU Changli, GUO Zhilong, et al. Prospection about application and research progress of synjournal technology of poly (butyleneadipate-co-terephthalate)[J]. Guangdong Chemical Industry, 2021, 48(6): 47-48.
[10] FERREIRA F V, CIVIDANES L S, GOUVEIA R F, et al. An overview on properties and applications of poly(butylene adipate-co-terephthalate): PBAT based composites[J]. Polymer Engineering and Science, 2019, 59:7-15.
[11] CRANSTON E, KAWADA J, RAYMOND S, et al. Co-crystallization model for synthetic biodegradable poly(butylene adipate-co-butylene terephthalate)[J]. Macromolecules, 2003, 4:995-999.
[12] FU Y, WU G, BIAN X, et al. Biodegradation behavior of poly(butylene adipate-co-terephthalate), poly(lactic acid), and their blend in freshwater with sediment[J]. Molecules, 2020, 25(17): 3946-3961.
doi: 10.3390/molecules25173946
[13] WITT U, MULLER R J, DECKWER W D. New biodegradable polyester-copolymers from commodity chemicals with favorable use properties[J]. Journal of Environmental Polymer Degradation, 1995, 3(4): 215-223.
doi: 10.1007/BF02068676
[14] MULLER R J, WITT U, RANTZE E, et al. Architecture of biodegradable co-polyesters containing aromatic constituents[J]. Polymer Degradation and Stability, 1998, 59:203-208.
doi: 10.1016/S0141-3910(97)00186-9
[15] 马一萍, 张乃文, 杨军伟, 等. PBAT的制备与性能[J]. 塑料, 2010, 39(4): 98-101.
MA Yiping, ZHANG Naiwen, YANG Junwei, et al. Preparation and properties of PBAT[J]. Plastics, 2010, 39(4): 98-101.
[16] 郝超, 张长远, 季菁华. 聚己二酸-对苯二甲酸丁二醇酯型生物可降解聚酯的合成与交联改性研究[J]. 化学世界, 2018, 59(3): 154-159.
HAO Chao, ZHANG Changyuan, JI Jinghua. Synjournal and modification of aliphatic-aromatic copolymer-poly(butylene adipate-co-butylene terephthalate) biodegradable polyester[J]. Chemical World, 2018, 59(3): 154-159.
[17] HERRERA R, FRANCO L, RODRIGUEZ G A, et al. Characterization and degradation behavior of poly (buty-lene adipate-co-terephthalate)s[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40(23): 4141-4157.
doi: 10.1002/pola.v40:23
[18] GAN Z, KUWABARA K, YAMAMOTO M, et al. Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters[J]. Polymer Degradation & Stability, 2004, 83(2): 289-300.
[19] SHI X Q, ITO H, KIKUTANI T. Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers[J]. Polymer, 2005, 46(25): 11442-11450.
doi: 10.1016/j.polymer.2005.10.065
[20] SHI X Q, KIKUTANI T, ITO H, et al. Characterization on mixed-crystal structure of poly(butylene terephthalate/succinate/adipate) biodegradable copolymer fibers[J]. Polymer, 2005, 46(3): 751-760.
doi: 10.1016/j.polymer.2004.11.080
[21] SHI X Q, ITO H, KIKUTANI T. Structure development and properties of high-speed melt spun poly(butylene terephthalate)/poly(butylene adipate-co-terephthalate) bicomponent fibers[J]. Polymer, 2006, 47(2): 611-616.
doi: 10.1016/j.polymer.2005.11.051
[22] 郑拓. 生物可降解聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)的纤维成型及紫外交联研究[D]. 上海:东华大学, 2016:10-42.
ZHENG Tuo. Study on formation and ultraviolet crosslinking of biodegradable poly(butylene adipate-co-terephthalate) fibers[D]. Shanghai:Donghua University, 2016: 10-42.
[23] 潘宏伟. 聚对苯二甲酸丁二醇-co-己二酸丁二醇酯(PBAT)生物降解膜的制备及性质研究[D]. 长春:长春工业大学, 2016:11-40.
PAN Hongwei. Preparation and properties of biodegradable poly(butylene terephthalate-co-butylene adipate) films[D]. Changchun: Changchun University of Technology, 2016: 11-40.
[24] 李鑫. 聚己二酸/对苯二甲酸丁二酯的合成与表征[D]. 镇江:江苏科技大学, 2018: 10-71.
LI Xin. Synthesis and characterization of poly(butylene adipate-co-terephthalate)[D]. Zhenjiang:Jiangsu University of Science and Technology, 2018: 10-71.
[25] LAYCOOK B, NIKOLI M, COLWELL J M, et al. Lifetime prediction of biodegradable polymers[J]. Progress in Polymer Science, 2017, 71:144-189.
doi: 10.1016/j.progpolymsci.2017.02.004
[26] ALLTRY R, LAMNAWAR K, MAAZOUZ A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy[J]. Polymer Degradation & Stability, 2012, 97(10): 1898-1914.
[27] 张敏, 孟庆阳, 刁晓倩, 等. PLA/PBAT共混物的降解性能研究[J]. 中国塑料, 2016, 30(8): 79-86.
ZHANG Min, MENG Qingyang, DIAO Xiaoqian, et al. Biodegradation behavior of PLA/PBAT blends[J]. China Plastics, 2016, 30(8): 79-86.
[28] 许新建. 生物可降解脂肪族/芳香族共聚酯(PBST)纤维的制备及其性能研究[D]. 上海:东华大学, 2007: 1-99.
XU Xinjian. Preparation and properties of biodegradable aliphatic-aromatic copolyesters (PBST) fiber[D]. Shanghai:Donghua University, 2017: 1-99.
[29] 杨菁卉, 杨福馨, 李绍菁, 等. PBAT/淀粉填充可降解薄膜的制备及降解性能的研究[J]. 功能材料, 2020, 51(10): 10075-10080.
YANG Jinghui, YANG Fuxin, LI Shaojing, et al. Preparation and degradability of PBAT/starch filled degradable firms[J]. Journal of Functional Materials, 2020, 51(10): 10075-10080.
[30] WENG Y X, JIN Y J, MENG Q Y, et al. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions[J]. Polymer Testing, 2013, 32(5): 918-926.
doi: 10.1016/j.polymertesting.2013.05.001
[31] KAMAL M R, HUANG B. Handbook of polymer degradation[M]. New York: Marcel Dekker Inc, 1992: 127-168.
[32] DING Y, HUANG D, AI T, et al. Bio-based poly(buty-lene furandicarboxylate-co-glycolate) copolyesters: synjournal, properties, and hydrolysis in different aquatic environments for water degradation application[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1254-1263.
[33] 曲萍, 郭宝华, 王海波, 等. PBAT全生物降解地膜在玉米田中的降解特性[J]. 农业工程学报, 2017, 33(17): 194-199.
QU Ping, GUO Baohua, WANG Haibo, et al. Degaradation characteristics of PBAT mulch in maize field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 194-199.
[1] MIN Xiaobao, PAN Zhijuan. Quality and performance of biomass fiber/pineapple leaf fiber multi-component blended yarn [J]. Journal of Textile Research, 2022, 43(01): 74-79.
[2] LI Longlong, WEI Peng, WU Cuixia, YAN Jinfei, LOU Hejuan, ZHANG Yifeng, XIA Yumin, WANG Yanping, WANG Yimin. Synthesis and properties of bio-based liquid crystal copolyester fiber based on p-hydroxyphenyl propionic acid [J]. Journal of Textile Research, 2022, 43(01): 9-14.
[3] WANG Songli, WANG Meilin, ZHOU Xiang, LIU Zunfeng. Research progress of artificial spider silk and imitation spider silk fiber [J]. Journal of Textile Research, 2021, 42(12): 174-179.
[4] SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88.
[5] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[6] YU Meiqiong, YUAN Hongmei, CHEN Lihui. Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution [J]. Journal of Textile Research, 2021, 42(05): 23-30.
[7] LU Zhenqian, YANG Yaru, XUN Yong. Research review of fiber effect on properties of cement-based composite [J]. Journal of Textile Research, 2021, 42(04): 177-183.
[8] ZUO Yajun, CAI Yun, WANG Lei, GAO Weidong. Influence of ply number of cotton yarns on fabrics performance [J]. Journal of Textile Research, 2021, 42(04): 74-79.
[9] SUN Chaoxu, LIU Xiucai. Research progress on applications of bio-based polyamide 56 fibers in textile fields [J]. Journal of Textile Research, 2021, 42(04): 26-32.
[10] HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve [J]. Journal of Textile Research, 2021, 42(02): 74-79.
[11] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[12] WANG Ying, WANG Yiting, WU Jiaqing, GUO Yafei, HAO Xinmin. Preparation of compound antistatic spinning oil for bio-based polyamide 56 and its effect on staple fiber spinnability [J]. Journal of Textile Research, 2021, 42(01): 84-89.
[13] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[14] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[15] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(03): 85 -87 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 1999, 20(04): 62 -64 .
[3] LIN Bin;LI Zhe. Influencing factors of drape raised quantity of bubble sleeve[J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(06): 104 -106 .
[4] JIA Qing-Long, JIAO Xiao-Ning, WANG Zhong-Zhong. The fiber diameter prediction model and optimization of PVDF electrospun lithium separators[J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(3): 22 -26 .
[5] .  Preparation of electrospun MnO2/PAN nanofibers and catalytic oxidation on formaldehyde[J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 1 -6 .
[6] . Moisture absorption of wild Calotropis gigantea fiber in Yunnan[J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(07): 22 -27 .
[7] . Recent progress of textile-based flexible mechanical sensors[J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 170 -176 .
[8] . Integrating of soft intelligent textile and functional fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 160 -169 .
[9] CHEN Yue, ZHAO Yonghuan, CHU Zhudan, ZHUANG Zhishan, QIU Linlin, DU Pingfan. Research progress of flexible lithium battery electrodes based on carbon fibers and their fabrics[J]. Journal of Textile Research, 2019, 40(02): 173 -180 .
[10] JI Changchun, ZHANG Kaiyuan, WANG Yudong, WANG Xinhou. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(08): 175 -180 .