Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (02): 37-43.doi: 10.13475/j.fzxb.20210800907
• Fiber Materials • Previous Articles Next Articles
CHEN Yong1, WU Jing1,2,3(), WANG Chaosheng1, PAN Xiaohu4, LI Naixiang4, DAI Junming4, WANG Huaping1
CLC Number:
[1] |
GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017. DOI: 10.1126/sciadv.1700782.
doi: 10.1126/sciadv.1700782 |
[2] | 周大旺, 乌婧, 杨建平, 等. 纤维微塑料的研究现状及其削减策略[J]. 纺织学报, 2021, 42(6): 8-17. |
ZHOU Dawang, WU Jing, YANG Jianping, et al. Research progress of fibrous microplastics and mitigation strategies[J]. Journal of Textile Research, 2021, 42(6): 8-17. | |
[3] | 国家发展和改革委员会. 国家发展改革委生态环境部关于进一步加强塑料污染治理的意见[EB/OL]. [2020-01-19]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202001/t20200119_1219275.html?code=&state=123. |
National Developmennt and Reform Commission. Opinions of national development and reform commission, ministry of ecology and environment on further strengthening the control of plastic pollution [EB/OL]. [2020-01-19]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202001/t20200119_1219275.html?code=&state=123. | |
[4] |
ABAYOMI O A, RANGE P, ALGHOUTI M A, et al. Microplastics in coastal environments of the arabian gulf[J]. Marine Pollution Bulletin, 2017, 124(1): 181-188.
doi: 10.1016/j.marpolbul.2017.07.011 |
[5] |
THUSHARI G, SENEVIRATHNA J, YAKUPITIYAGE A, et al. Effects of microplastics on sessile invertebrates in the eastern coast of Thailand: an approach to coastal zone conservation[J]. Marine Pollution Bulletin, 2017, 124(1): 349-355.
doi: 10.1016/j.marpolbul.2017.06.010 |
[6] |
LAW K L, THOMPSON R C. Microplastics in the seas[J]. Science, 2014, 345(6193): 144-145.
doi: 10.1126/science.1254065 |
[7] |
ALBERTSSON A C, HAKKARAINEN M. Designed to degrade Suitably designed degradable polymers can play a role in reducing plastic waste[J]. Science, 2017, 358(6365): 872-873.
doi: 10.1126/science.aap8115 |
[8] | WEI X F, BOHLEN M, LINDBLAD C, et al. Microplastics generated from a biodegradable plastic in freshwater and seawater[J]. Water Research, 2021, 198(6): 117-123. |
[9] | 欧阳春平, 卢昌利, 郭志龙, 等. 聚对苯二甲酸-己二酸丁二醇酯(PBAT)合成工艺技术研究进展与应用展望[J]. 广东化工, 2021, 48(6): 47-48. |
OUYANG Chunping, LU Changli, GUO Zhilong, et al. Prospection about application and research progress of synjournal technology of poly (butyleneadipate-co-terephthalate)[J]. Guangdong Chemical Industry, 2021, 48(6): 47-48. | |
[10] | FERREIRA F V, CIVIDANES L S, GOUVEIA R F, et al. An overview on properties and applications of poly(butylene adipate-co-terephthalate): PBAT based composites[J]. Polymer Engineering and Science, 2019, 59:7-15. |
[11] | CRANSTON E, KAWADA J, RAYMOND S, et al. Co-crystallization model for synthetic biodegradable poly(butylene adipate-co-butylene terephthalate)[J]. Macromolecules, 2003, 4:995-999. |
[12] |
FU Y, WU G, BIAN X, et al. Biodegradation behavior of poly(butylene adipate-co-terephthalate), poly(lactic acid), and their blend in freshwater with sediment[J]. Molecules, 2020, 25(17): 3946-3961.
doi: 10.3390/molecules25173946 |
[13] |
WITT U, MULLER R J, DECKWER W D. New biodegradable polyester-copolymers from commodity chemicals with favorable use properties[J]. Journal of Environmental Polymer Degradation, 1995, 3(4): 215-223.
doi: 10.1007/BF02068676 |
[14] |
MULLER R J, WITT U, RANTZE E, et al. Architecture of biodegradable co-polyesters containing aromatic constituents[J]. Polymer Degradation and Stability, 1998, 59:203-208.
doi: 10.1016/S0141-3910(97)00186-9 |
[15] | 马一萍, 张乃文, 杨军伟, 等. PBAT的制备与性能[J]. 塑料, 2010, 39(4): 98-101. |
MA Yiping, ZHANG Naiwen, YANG Junwei, et al. Preparation and properties of PBAT[J]. Plastics, 2010, 39(4): 98-101. | |
[16] | 郝超, 张长远, 季菁华. 聚己二酸-对苯二甲酸丁二醇酯型生物可降解聚酯的合成与交联改性研究[J]. 化学世界, 2018, 59(3): 154-159. |
HAO Chao, ZHANG Changyuan, JI Jinghua. Synjournal and modification of aliphatic-aromatic copolymer-poly(butylene adipate-co-butylene terephthalate) biodegradable polyester[J]. Chemical World, 2018, 59(3): 154-159. | |
[17] |
HERRERA R, FRANCO L, RODRIGUEZ G A, et al. Characterization and degradation behavior of poly (buty-lene adipate-co-terephthalate)s[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40(23): 4141-4157.
doi: 10.1002/pola.v40:23 |
[18] | GAN Z, KUWABARA K, YAMAMOTO M, et al. Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters[J]. Polymer Degradation & Stability, 2004, 83(2): 289-300. |
[19] |
SHI X Q, ITO H, KIKUTANI T. Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers[J]. Polymer, 2005, 46(25): 11442-11450.
doi: 10.1016/j.polymer.2005.10.065 |
[20] |
SHI X Q, KIKUTANI T, ITO H, et al. Characterization on mixed-crystal structure of poly(butylene terephthalate/succinate/adipate) biodegradable copolymer fibers[J]. Polymer, 2005, 46(3): 751-760.
doi: 10.1016/j.polymer.2004.11.080 |
[21] |
SHI X Q, ITO H, KIKUTANI T. Structure development and properties of high-speed melt spun poly(butylene terephthalate)/poly(butylene adipate-co-terephthalate) bicomponent fibers[J]. Polymer, 2006, 47(2): 611-616.
doi: 10.1016/j.polymer.2005.11.051 |
[22] | 郑拓. 生物可降解聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)的纤维成型及紫外交联研究[D]. 上海:东华大学, 2016:10-42. |
ZHENG Tuo. Study on formation and ultraviolet crosslinking of biodegradable poly(butylene adipate-co-terephthalate) fibers[D]. Shanghai:Donghua University, 2016: 10-42. | |
[23] | 潘宏伟. 聚对苯二甲酸丁二醇-co-己二酸丁二醇酯(PBAT)生物降解膜的制备及性质研究[D]. 长春:长春工业大学, 2016:11-40. |
PAN Hongwei. Preparation and properties of biodegradable poly(butylene terephthalate-co-butylene adipate) films[D]. Changchun: Changchun University of Technology, 2016: 11-40. | |
[24] | 李鑫. 聚己二酸/对苯二甲酸丁二酯的合成与表征[D]. 镇江:江苏科技大学, 2018: 10-71. |
LI Xin. Synthesis and characterization of poly(butylene adipate-co-terephthalate)[D]. Zhenjiang:Jiangsu University of Science and Technology, 2018: 10-71. | |
[25] |
LAYCOOK B, NIKOLI M, COLWELL J M, et al. Lifetime prediction of biodegradable polymers[J]. Progress in Polymer Science, 2017, 71:144-189.
doi: 10.1016/j.progpolymsci.2017.02.004 |
[26] | ALLTRY R, LAMNAWAR K, MAAZOUZ A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy[J]. Polymer Degradation & Stability, 2012, 97(10): 1898-1914. |
[27] | 张敏, 孟庆阳, 刁晓倩, 等. PLA/PBAT共混物的降解性能研究[J]. 中国塑料, 2016, 30(8): 79-86. |
ZHANG Min, MENG Qingyang, DIAO Xiaoqian, et al. Biodegradation behavior of PLA/PBAT blends[J]. China Plastics, 2016, 30(8): 79-86. | |
[28] | 许新建. 生物可降解脂肪族/芳香族共聚酯(PBST)纤维的制备及其性能研究[D]. 上海:东华大学, 2007: 1-99. |
XU Xinjian. Preparation and properties of biodegradable aliphatic-aromatic copolyesters (PBST) fiber[D]. Shanghai:Donghua University, 2017: 1-99. | |
[29] | 杨菁卉, 杨福馨, 李绍菁, 等. PBAT/淀粉填充可降解薄膜的制备及降解性能的研究[J]. 功能材料, 2020, 51(10): 10075-10080. |
YANG Jinghui, YANG Fuxin, LI Shaojing, et al. Preparation and degradability of PBAT/starch filled degradable firms[J]. Journal of Functional Materials, 2020, 51(10): 10075-10080. | |
[30] |
WENG Y X, JIN Y J, MENG Q Y, et al. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions[J]. Polymer Testing, 2013, 32(5): 918-926.
doi: 10.1016/j.polymertesting.2013.05.001 |
[31] | KAMAL M R, HUANG B. Handbook of polymer degradation[M]. New York: Marcel Dekker Inc, 1992: 127-168. |
[32] | DING Y, HUANG D, AI T, et al. Bio-based poly(buty-lene furandicarboxylate-co-glycolate) copolyesters: synjournal, properties, and hydrolysis in different aquatic environments for water degradation application[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(3): 1254-1263. |
[33] | 曲萍, 郭宝华, 王海波, 等. PBAT全生物降解地膜在玉米田中的降解特性[J]. 农业工程学报, 2017, 33(17): 194-199. |
QU Ping, GUO Baohua, WANG Haibo, et al. Degaradation characteristics of PBAT mulch in maize field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 194-199. |
[1] | MIN Xiaobao, PAN Zhijuan. Quality and performance of biomass fiber/pineapple leaf fiber multi-component blended yarn [J]. Journal of Textile Research, 2022, 43(01): 74-79. |
[2] | LI Longlong, WEI Peng, WU Cuixia, YAN Jinfei, LOU Hejuan, ZHANG Yifeng, XIA Yumin, WANG Yanping, WANG Yimin. Synthesis and properties of bio-based liquid crystal copolyester fiber based on p-hydroxyphenyl propionic acid [J]. Journal of Textile Research, 2022, 43(01): 9-14. |
[3] | WANG Songli, WANG Meilin, ZHOU Xiang, LIU Zunfeng. Research progress of artificial spider silk and imitation spider silk fiber [J]. Journal of Textile Research, 2021, 42(12): 174-179. |
[4] | SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88. |
[5] | ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191. |
[6] | YU Meiqiong, YUAN Hongmei, CHEN Lihui. Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution [J]. Journal of Textile Research, 2021, 42(05): 23-30. |
[7] | LU Zhenqian, YANG Yaru, XUN Yong. Research review of fiber effect on properties of cement-based composite [J]. Journal of Textile Research, 2021, 42(04): 177-183. |
[8] | ZUO Yajun, CAI Yun, WANG Lei, GAO Weidong. Influence of ply number of cotton yarns on fabrics performance [J]. Journal of Textile Research, 2021, 42(04): 74-79. |
[9] | SUN Chaoxu, LIU Xiucai. Research progress on applications of bio-based polyamide 56 fibers in textile fields [J]. Journal of Textile Research, 2021, 42(04): 26-32. |
[10] | HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve [J]. Journal of Textile Research, 2021, 42(02): 74-79. |
[11] | SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112. |
[12] | WANG Ying, WANG Yiting, WU Jiaqing, GUO Yafei, HAO Xinmin. Preparation of compound antistatic spinning oil for bio-based polyamide 56 and its effect on staple fiber spinnability [J]. Journal of Textile Research, 2021, 42(01): 84-89. |
[13] | SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77. |
[14] | WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36. |
[15] | LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41. |
|