Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 58-63.doi: 10.13475/j.fzxb.20210801506

• Fiber Materials • Previous Articles     Next Articles

Effect of coagulation bath on structure and properties of regenerated collagen fibers

DU Xuan1,2, DING Changkun1,2(), YUE Chengfei1,2, SU Jieliang1,2, YAN Xuhuan1,2, CHENG Bowen3   

  1. 1. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tiangong University, Tianjin 300387, China
    3. Tianjin University of Science and Technology, Tianjin 300457, China
  • Received:2021-08-02 Revised:2022-03-15 Online:2022-09-15 Published:2022-09-26
  • Contact: DING Changkun E-mail:dingchangkun@tiangong.edu.cn

Abstract:

To understand the forming mechanism of collagen(Col) dopes in different coagulation baths, regenerated collagen fibers were prepared via dry-wet spinning method using acetone, NaCl solution, polyvinyl alcohol(PEG) solution and phosphate buffer saline(PBS) solution as coagulation baths. The effects of coagulation conditions on the fibril structure and mechanical properties of collagen fibers were systematically studied. The results showed that collagen dopes demonstrated the fastest dehydration, aggregation and solidification rates in acetone coagulation bath, and acetone-Col fibers could achieve the tensile strength of up to 1.22 cN/dtex with highly ordered and tightly packed small fibrils. In addition, for NaCl solution, PEG solution and PBS solution, collagen fibers were all precipitated by removing the hydration layers on their surfaces, and PBS solution displayed a very slow dehydration rate because its salt concentration was low. However, the tensile strength of PBS-Col fibers was relatively high as well due to homogeneous tightly arranged fibrils with larger size. Furthermore, NaCl-Col fibers and PEG-Col fibers showed relatively lower tensile strength because of larger fibrils with more loosely package and bigger gaps, leading to lowered intermolecular interactions among fibrils.

Key words: collagen fiber, coagulation bath, dry-wet spinning, fibril, tensile strength, forming mechanism

CLC Number: 

  • TQ342.94

Fig.1

Mechanical properties of acetone-Col fibers. (a) Deionized water; (b) Ammonia; (c) Coagulation time"

Fig.2

Mechanical properties of NaCl-Col fibers. (a) NaCl concentration; (b) pH value; (c) Coagulation time"

Fig.3

Mechanical properties of PEG-Col fibers. (a) Relative molecular weight of PEG; (b) pH value; (c) Coagulation time"

Fig.4

Mechanical properties of PBS-Col fibers"

Fig.5

SEM images of regenerated collagen fibers. (a) Surface; (b) Profile; (c) Cross section"

Fig.6

XRD curves of regenerated collagen fibers"

Fig.7

Infrared spectra of regenerated collagen fibers"

[1] FERREIRA A M, GENTILE P, CHIONO V, et al. Collagen for bone tissue regeneration[J]. Acta Biomaterialia, 2012, 8: 3191-3200.
doi: 10.1016/j.actbio.2012.06.014
[2] RICARD-BLUM S. The collagen family[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(1): 1-19.
[3] MICHAEL M. Processing of collagen based biomaterials and the resulting materials properties[J]. Biomed Central, 2019. DOI: 10.1186/s12938-019-0647-0.
doi: 10.1186/s12938-019-0647-0
[4] NORRIS W D, STEELE J G, JOHNSON G, et al. Serum enhancement of human endothelial cell attachment to and spreading on collagens I and IV does not require serum fibronectin or vitronectin[J]. Journal of Cell Science, 1990, 95(2): 255-262.
doi: 10.1242/jcs.95.2.255
[5] LIU H Y, LI D, GUO S D. Studies on collagen from the skin of channel catfish (ictalurus punctaus)[J]. Food Chemistry, 2007, 101(2): 621-625.
doi: 10.1016/j.foodchem.2006.01.059
[6] ZENG S K, ZHANG C H, LIN H, et al. Isolation and characterisation of acid-solubilised collagen from the skin of nile tilapia (oreochromis niloticus)[J]. Food Chemistry, 2009, 116(4): 879-883.
doi: 10.1016/j.foodchem.2009.03.038
[7] ZEUGOLIS D I, KHEW S T, YEW E S, et al. Electro-spinning of pure collagen nano-fibres-just an expensive way to make gelatin?[J]. Biomaterials, 2008, 29(15): 2293-2305.
doi: 10.1016/j.biomaterials.2008.02.009
[8] TRONCI G, KANUPARTI R S, ARAFAT M T, et al. Wet-spinnability and crosslinked fiber properties of two collagen polypeptides with varied molecular weight[J]. International Journal of Biological Macromolecules, 2015, 81: 112-120.
doi: 10.1016/j.ijbiomac.2015.07.053
[9] SIRIWARDANE M L, DEROSA K, COLLINS G, et al. Controlled formation of cross-linked collagen fibers for neural tissue engineering applications[J]. Biofabrication, 2014, 6(1): 1-3.
[10] AHN H, GONG D J, LEE H H, et al. Mechanical properties of porcine and fish skin-based collagen and conjugated collagen fibers[J]. Polymers, 2021. DOI: 10.3390/polym13132151.
doi: 10.3390/polym13132151
[11] 林云周, 高波, 陈武勇, 等. 皮胶原蛋白/PVA复合纤维的研制:提高初生纤维中蛋白质含量的研究[J]. 中国皮革, 2006, 4(11): 19-22.
LIN Yunzhou, GAO Bo, CHEN Wuyong, et al. Preparation of collagen/PVA composite fiber enhancing content of protein in the fiber[J]. China Leather, 2006, 4(11): 19-22.
[12] 闵雯, 张丽平. 凝固浴对胶原蛋白/壳聚糖复合纤维的影响[J]. 纺织导报, 2012 (12): 53-54.
MIN Wen, ZHANG Liping. Effect of coagulation bath on collagen/chitosan blended fiber[J]. China Textile Leader, 2012 (12): 53-54.
[13] ZEUGOLIS D I, PAUL R G, ATTENBURROW G. Engineering extruded collagen fibers for biomedical applications[J]. Journal of Applied Polymer Science, 2008, 108(5): 2886-2894.
doi: 10.1002/app.27208
[14] WANG M C, PINS G D, SILVER F H. Collagen fibres with improved strength for the repair of soft tissue injuries[J]. Biomaterials, 1994, 15(7): 507-512.
doi: 10.1016/0142-9612(94)90016-7
[15] YAARI A, SCHILT Y, TAMBURU C, et al. Wet spinning and drawing of human recombinant collagen[J]. ACS Biomaterials Science and Engineering, 2016, 2(3): 349-360.
doi: 10.1021/acsbiomaterials.5b00461
[16] 岳程飞, 丁长坤, 李璐, 等. 碳化二亚胺/羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(3): 1-7.
YUE Chengfei, DING Changkun, LI Lu, et al. Carbodiimide/hydroxysuccinimide crosslinking modification and properties of collagen fibers[J]. Journal of Textile Research, 2020, 41(3): 1-7.
doi: 10.1177/004051757104100101
[17] 鲁吉珂, 黎业娟, 吴霄玥, 等. 有机溶剂沉淀法提取乳酸链球菌素的效果[J]. 食品科学, 2012, 33(10): 84-86.
LU Jike, LI Yejuan, WU Xiaoyue, et al. Separation of nisin from fermentation broth concentrate by organic solvent precipitation[J]. Food Science, 2012, 33(10): 84-86.
doi: 10.1111/j.1365-2621.1968.tb00889.x
[18] 程海明, 陈敏, 李志强. 胶原及皮革等电点的表征方法综述[J]. 皮革科学与工程, 2012, 22(4): 20-24.
CHENG Haiming, CHEN Min, LI Zhiqiang. Review of the determination methods of the isoelectric point of collagen and leather[J]. Leather Science and Engineering, 2012, 22(4): 20-24.
[19] 曹琴, 舒飞翼, 汪海波, 等. 湿法纺丝制备胶原纤维丝及紫外辐照对其性能的调控[J]. 武汉轻工大学学报, 2021, 40(1): 54-60.
CAO Qin, SHU Feiyi, WANG Haibo, et al. Preparation of collagen fiber by wet spinning and regulation effect of its properties by ultraviolet irradiation[J]. Journal of Wuhan Polytechnic University, 2021, 40 (1): 54-60.
[20] 李倩, 丁长坤, 张静, 等. 胶原/高分子量壳聚糖复合纤维的制备及其性能[J]. 纺织学报, 2018, 39(5): 8-13.
LI Qian, DING Changkun, ZHANG Jing, et al. Preparation and properties of collagen/high-molecular weight chitosan composite fibers[J]. Journal of Textile Research, 2018, 39(5): 8-13.
[21] 杜建华. I型胶原纤维的制备、改性及其性能研究[D]. 天津: 天津工业大学, 2019: 17-41.
DU Jianhua. Study on preparation, modification and properties of type I collagen fiber[D]. Tianjin: Tiangong University, 2019: 17-41.
[22] 陈静涛, 赵玉萍, 徐政, 等. 重组胶原蛋白与牛源I型胶原蛋白红外光谱研究[J]. 材料导报, 2008, 4(3): 119-121.
CHEN Jingtao, ZHAO Yuping, XU Zheng, et al. FT-IR spectrometric study of reconbinant collagen and borine tendon type I collagen[J]. Materials Reports, 2008, 4(3): 119-121.
[23] DOYLE B B, BENDIT E G, BLOUT E R. Infrared spectroscopy of collagen and collagen-like polypeptides[J]. Biopolymers, 1975, 14(5): 937-957.
doi: 10.1002/bip.1975.360140505
[24] 徐元媛, 张莹, 张雨萱, 等. 聚乙二醇中红外光谱研究[J]. 齐鲁石油化工, 2020, 48(3): 188-192.
XU Yuanyuan, ZHANG Ying, ZAHNG Yuxuan, et al. Infrared spectroscopy of polyethylene glycol[J]. Qilu Petrochemical Technology, 2020, 48(3): 188-192.
[1] ZHU Lütao, HAO Li, SHEN Wei, ZHU Chengyan. Analysis of quasi-brittle fracture performance of glass fiber composites based on boundary effect model [J]. Journal of Textile Research, 2022, 43(07): 75-80.
[2] TAN Yanjun, HUO Qian, LIU Shurui. Preparation and ultraviolet light resistance of poly(p-phenylene benzoxazole) fiber coated with nano titanium dioxide [J]. Journal of Textile Research, 2021, 42(07): 69-75.
[3] HUANG Wei, CHENG Chunzu, ZHANG Jiayu, ZHANG Chenxi, CHENG Min, XU Jigang, LIU Yunchong. Preparation and characterization of high fibrillation Lyocell fiber [J]. Journal of Textile Research, 2021, 42(06): 41-45.
[4] LIU Xiaohan, TIAN Miao, WANG Yunyi, LI Jun. Research progress in effect of flame-retardant fabric aging on its tensile strength [J]. Journal of Textile Research, 2020, 41(11): 181-188.
[5] TANG Feng, YU Houyong, ZHOU Ying, LI Yingzhan, YAO Juming, WANG Chuang, JIN Wanhui. Preparation and property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films [J]. Journal of Textile Research, 2020, 41(09): 8-15.
[6] ZHU Weiwei, CAI Chong, ZHANG Cong, LONG Jiajie, SHI Meiwu. Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber [J]. Journal of Textile Research, 2020, 41(03): 8-14.
[7] YUE Chengfei, DING Changkun, LI Lu, CHENG Bowen. Carbodiimide/hydroxysuccinimide crosslinking modification and properties of collagen fibers [J]. Journal of Textile Research, 2020, 41(03): 1-7.
[8] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester/ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
[9] SONG Xing, ZHU Chengyan, CAI Fengjie, LÜ Zhining, TIAN Wei. Influence of alkali treatment on mechanical properties of polyester/photosensitive resin composites [J]. Journal of Textile Research, 2019, 40(07): 97-102.
[10] LIU Qiannan, ZHANG Han, LIU Xinjin, SU Xuzhong. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[11] . Prediction model on tensile strength of air jet vortex spinning yarn and its verification [J]. Journal of Textile Research, 2018, 39(10): 32-37.
[12] . Preparation and properties of collagen/high-molecular weight chitosan composite fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 8-13.
[13] . Preparation and properties of wet-spinning graphene fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 1-5.
[14] . Influence of tensile residual stress on mechanical properties of poly(vinylidene fluoride) fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 28-33.
[15] . Sizing of polylactic acid filaments at lower temperature [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!