Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 88-93.doi: 10.13475/j.fzxb.20210802806

• Textile Engineering • Previous Articles     Next Articles

Preparation and properties of thermoplastic polyurethane meltblowns

LIU Ya(), CHENG Kewei, ZHAO Yixia, YU Wen, ZHANG Shuping, QIAN Zimao   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2021-08-03 Revised:2022-03-08 Online:2022-11-15 Published:2022-12-26

Abstract:

In order to improve strength and elastic recovery of traditional meltblown nonwovens, a new type of elastic meltblown nonwovens was prepared from thermoplastic polyurethane (TPU). The thermal properties and rheological properties of TPU were studied, and the effects of preparation process parameters on the morphology, mechanical properties, air permeability and contact angle of TPU meltblown nonwovens were analyzed. The results show that the TPU raw material with a number average molecular weight of 33 767 g/mol, a molecular weight distribution index of 2.19 and a melting point of 159.4 ℃ has good rheological properties at 230 ℃ which is suitable for melt-blown spinning. When the average fiber diameter is 10.27 μm and the average fiber web pore size is 145 μm, the longitudinal and transverse rupture strengths of the prepared TPU meltblown nonwovens are 52 and 49 N/(5 cm), the longitudinal and transverse elongation at break are 424% and 459%, respectively. With the same web parameters, the 50% elongation recovery rate is 97%, the air permeability is 580 L/(m2·s), and the water contact angle is 110.3°, showing obvious water-repellent properties.

Key words: thermoplastic polyurethane, elastic nonwoven material, breathability, water repellency

CLC Number: 

  • TS176.4

Tab.1

Preparation process parameters"

样品编号 热风温度/℃ 牵伸风压/MPa 接收距离/cm
1 260 0.015 40
2 260 0.015 35
3 260 0.015 30
4 260 0.015 25
5 260 0.015 20
6 260 0.020 25
7 260 0.015 25
8 260 0.010 25
9 260 0.005 25
10 260 0.001 25
11 260 0.015 25
12 265 0.015 25
13 270 0.015 25
14 275 0.015 25
15 280 0.015 25

Tab.2

Molecular weight and molecular weight distribution of TPU raw material"

原料
编号
分子质量/(g·mol-1) 分子质量
分布
Mn Mw Mp Mz
1# 32 069 62 540 44 578 108 592 1.950
2# 47 675 86 938 74 557 134 979 1.824
3# 33 767 65 843 46 507 112 566 1.950
4# 27 796 52 848 40 076 92 511 1.901
5# 34 606 77 430 52 135 127 858 2.237

Fig.1

DSC (a) and TG (b) curves of 5# TPU raw material"

Fig.2

Rheological properties of 5# TPU raw material"

Fig.3

SEM image of TPU meltblown nonwovens(×1 500)"

Fig.4

Variation trend of fiber diameter with different process parameters.(a) Different receiving distances; (b)Different drafting wind pressure; (c) Different hot air temperature"

Fig.5

Mechanical properties of TPU meltblown nonwovens with different process parameters.(a)Different receiving distances; (b)Different drafting wind pressure;(c) Different hot air temperatures"

Fig.6

Air permeability of TPU meltblown nonwovens with different process parameters.(a)Different receiving distances;(b)Different drafting wind pressure; (c) Different hot air temperatures"

Tab.3

Results of contact angle"

样品
编号
接触角/
(°)
样品
编号
接触角/
(°)
样品
编号
接触角/
(°)
1 106.0 6 102.0 11 103.0
2 106.0 7 103.0 12 107.0
3 105.0 8 106.0 13 103.7
4 103.0 9 107.7 14 103.0
5 105.0 10 110.3 15 103.0
[1] YANG Yu, EUNKYOUNG Shim. Process-structure-property relationship of meltblown poly (styrene-ethylene/butylene-styrene) nonwovens[J]. Journal of Applied Polymer Science, 2021. DOI:10.1002/app.50230.
doi: 10.1002/app.50230
[2] 邓文键, 关克田, 庄旭品, 等. 熔喷弹性非织造布及其应用[J]. 非织造布, 2010, 18(6):23-26.
DENG Wenjian, GUAN Ketian, ZHUANG Xupin, et al. Meltblown elastic nonwoven fabric and its appli-cation[J]. Nonwovens, 2010, 18(6): 23-26.
[3] GUPTA A K, PURWAR S N. Crystallization of PP in PP/SEBS blends and its correlation with tensile properties[J]. Journal of Applied Polymer Science, 1984, 29(5):1595-1609.
doi: 10.1002/app.1984.070290514
[4] SETZ S, STRICKER F, KRESSLER J, et al. Morphology and mechanical properties of blends of isotactic or syndiotactic polypropylene with SEBS block copolymers[J]. Journal of Applied Polymer Science, 1996, 59(7):1117-1128.
doi: 10.1002/(SICI)1097-4628(19960214)59:7<1117::AID-APP8>3.0.CO;2-H
[5] YING J R, LIU S P, GUO F, et al. Non-isothermal crystallization and crystalline structure of PP/POE blends[J]. Journal of Thermal Analysis and Calorimetry, 2008, 91(3):723-731.
doi: 10.1007/s10973-007-8586-6
[6] REED J F, SWAN M. Polyolefin meltblown elastic webs: US19930111982[P]. 1994-06-28.
[7] JAFARI S H, GUPTA A K. Impact strength and dynamic mechanical properties correlation in elastomer-modified polypropylene[J]. Journal of Applied Polymer Science, 2000, 78(5):962-971.
doi: 10.1002/1097-4628(20001031)78:5<962::AID-APP40>3.0.CO;2-5
[8] GOODARZI V, JAFARI S H, KHONAKDAR H A, et al. Assessment of role of morphology in gas permselectivity of membranes based on polypropylene/ethylene vinyl acetate/clay nanocomposite[J]. Journal of Membrane Science, 2013, 445:76-87.
doi: 10.1016/j.memsci.2013.04.073
[9] MACIEL A, SALAS V, MANERO O. PP/EVA blends: Mechanical properties and morphology. Effect of compatibilizers on the impact behavior[J]. Advances in Polymer Technology, 2010, 24(4):241-252.
doi: 10.1002/adv.20050
[10] 付小栓, 柯勤飞. 熔喷弹性聚烯烃非织造材料的研发与应用[J]. 产业用纺织品, 2006, 192(9):4-6.
FU Xiaoshuan, KE Qinfei. Development and application of meltblown elastic polyolefin nonwoven materials[J]. Industrial Textiles, 2006, 192(9): 4-6.
[11] 邢晓露. PP/EVA弹性熔喷非织造布的制备及其性能研究[D]. 青岛: 青岛大学, 2020:1-48.
XING Xiaolu. Preparation and properties of PP/EVA elastic meltblown nonwoven fabric[D]. Qingdao: Qingdao University, 2020:1-48.
[12] 云高杰, 焦晓宁. 弹性熔喷法非织造布的发展与特点[J]. 非织造布, 2008, 16(3):13-15.
YUN Gaojie, JIAO Xiaoning. The development and characteristics of elastic meltblown nonwovens[J]. Nonwovens, 2008, 16(3): 13-15.
[13] 游长江, 谢青, 曾一铮, 等. 不饱和聚酯/热塑性聚氨酯/甘蔗纤维复合材料的结构与性能[J]. 高分子材料科学与工程, 2011, 27(6):53-56.
YOU Changjiang, XIE Qing, ZENG Yizheng, et al. The structure and properties of unsaturated polyester/thermoplastic polyurethane/sugar cane fiber com-posites[J]. Polymer Materials Science and Engineering, 2011, 27(6):53-56.
[1] XUE Chao, ZHU Hao, YANG Xiaochuan, REN Yu, LIU Wanwan. Preparation and properties of polyurethane-based carbon nanotube/liquid metal conductive fibers [J]. Journal of Textile Research, 2022, 43(07): 29-35.
[2] LIN Meixia, WANG Jiawen, XIAO Shuang, WANG Xiaoyun, LIU Hao, HE Yin. Preparation and performance of high sensitive ultra-compressed bio-based carbonized flexible pressure sensor [J]. Journal of Textile Research, 2022, 43(02): 61-68.
[3] XU Shilin, YANG Shiyu, ZHANG Yaru, HU Liu, HU Yi. Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes [J]. Journal of Textile Research, 2021, 42(12): 42-42.
[4] DONG Tiantian, WANG Lei, GAO Weidong. Relations of pore size and distribution characteristics of down-proof fabric with breathability and anti-drilling property [J]. Journal of Textile Research, 2020, 41(12): 49-53.
[5] FANG Jialu, CHEN Mingyan, HUANG Zijing. Design and development of self-rescue floating swimsuit [J]. Journal of Textile Research, 2020, 41(12): 118-123.
[6] . Influence of water repellent finished polypeopylene nonwoven fabric nonwoven fabric on micro environment of grape bagging [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 101-106.
[7] . Influence of sponge porous material on properties of waterproof and moisture permeable composite fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 55-58.
[8] . Research on the Compatibility of Polyurethane Coated Fabrics with Adhesive Interlining [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(9): 41-0.
[9] . Surface modification of cotton fabric by hexafluoropropylene/ helium plasma at atmospheric pressure [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(4): 85-90.
[10] HUANG Ji-zhi;ZHANG Jian-chun;WANG Feng. Structure and properties of polytetrafluorethylene layered membranes for protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(9): 78-80.
[11] WANG Xin-feng;LUO Xin;WANG Xiao-dong;WU Hui-li. Heat-melt adhesion and mechanical properties of modified thermoplastic polyurethane [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 58-60.
[12] GUO Jian-sheng;HU Da-yan. Study on the breathable treatment of microcapsule technique applying to the coated fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(12): 84-87.
[13] WEI Xia;GU Zhen-ya;FAN Li-hong;LIU Na;LIU Shang-nan . Research on lotus leaf-like fabric by ultra-fine fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 55-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .