Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 107-112.doi: 10.13475/j.fzxb.20210803307

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation and electromagnetic shielding properties of polyester fabric based nano-copper/reduced graphene oxide composites

YANG Honglin1(), XIANG Wei1, DONG Shuxiu2   

  1. 1. Jianhu Institute, Zhejiang Industry Polytechnic College, Shaoxing, Zhejiang 312000, China
    2. China Dyeing and Printing Association, Beijing 100020, China
  • Received:2021-08-03 Revised:2022-01-14 Online:2022-08-15 Published:2022-08-24

Abstract:

In order to prepare lightweight and flexible materials with electromagnetic shielding properties, nano copper emulsion and graphene oxide were loaded on polyester fabrics by dip-padding, after which the graphene oxide was reduced by a chemical reduction method to achieve polyester fabrics loaded with nano-copper/reduced graphene oxide composite. The materials were characterized by scanning electron microscopy, Fourier transform infrared spectrometer and X-ray diffraction. The effects of particle size of nano-copper emulsion, mass fraction of nano copper emulsion and graphene oxide on electromagnetic shielding properties of the composite materials were studied. The results show that the composite materials have excellent electromagnetic shielding properties with a minimum reflection loss value of –38.06 dB, with the average particle size of nano copper emulsion being 93.7 nm and mass fraction 20%, and mass fraction of the graphene oxide 8%. Compared with untreated polyester fabric, the composite materials have better wettability and handle, but the breaking strength of composite materials reduced slightly.

Key words: nano-copper, reduced graphene oxide, polyester fabric, composite material, electromagnetic shielding property

CLC Number: 

  • TS195.2

Fig.1

Preparation schematic illustration of nano-copper/reduced graphene oxide composite materials loaded on polyester fabrics"

Fig.2

SEM images of surface morphology of polyester fabrics and composite materials (×2 000). (a) Polyester fabric; (b) Nano-copper composite materials loaded on polyester fabric; (c) Nano-copper/reduced graphene oxide composite materials loaded on polyester fabric"

Tab.1

X-ray microanalysis of polyester fabrics and composite materials"

试样 不同元素含量/%
C O Cu
涤纶织物 56.0 44.0
涤纶基纳米铜复合材料 48.3 42.8 8.9
涤纶基纳米铜/还原氧
化石墨烯复合材料
63.7 35.7 0.6

Fig.3

FT-IR spectra of polyester fabrics and composite materials"

Fig.4

XRD patterns of polyester fabrics and composite materials. (a)2θ ranging from 5° to 60°; (b)2θ ranging from 11° to 16°; (c)2θ ranging from 20° to 28°"

Tab.2

Effect of particle size of nano-copper emulsion on electromagnetic shielding property of nano-copper composite materials loaded on polyester fabrics"

平均粒径/nm 25.4 93.7 237.8 514.6 1 408.6
最小反射损
耗值/dB
–6.81 –11.22 –10.56 –5.89 –3.65

Fig.5

TEM images of nano copper emulsion with average particle size of 93.7 nm (a), 237.8 nm(b), 514.6 nm(c), and 1 408.6 nm(d)"

Tab.3

Effect of nano copper emulsion mass fraction on electromagnetic shielding property of composite material"

纳米铜乳液质量分数/% 最小反射损耗值/dB
0 –0.04
5 –4.47
10 –6.78
15 –8.56
20 –11.22
25 –11.65

Tab.4

Effect of graphene oxide mass fraction on electromagnetic shielding property of composite materials"

氧化石墨烯质量分数/% 最小反射损耗值/dB
0 –11.22
2 –17.67
4 –22.34
6 –30.87
8 –38.06
10 –39.39

Tab.5

Reflective loss values of polyester fabrics and composite materials at different frequency"

频率/MHz 反射损耗值/dB
涤纶织物 涤纶基纳米铜/还原
氧化石墨烯复合材料
0.300 2.87 –1.90
1.001 0.34 –38.06
30.990 –0.04 –1.10
522.157 0.35 –1.54
706.344 0.01 –2.86
982.625 0.05 –6.80
1 335.651 1.64 –2.72
1 995.655 0.01 –0.30
2 931.941 4.39 –0.11

Tab.6

Absorbency, Zeta potential values, breaking strength and drape coefficient of polyester fabrics and composite materials"

试样 亲水
性/s
Zeta电
位/mV
断裂强
力/N
悬垂系
数/%
涤纶织物 >60 –69.8 463 56.38
涤纶基纳米铜/还原
氧化石墨烯复合材料
4.55 –40.4 451 41.66
[1] 王澜, 韩布新. 当代电磁辐射对身心健康影响的研究概况[J]. 工业卫生与职业病, 2021, 47(4): 344-348.
WANG Lan, HAN Buxin. Overview of the influence of contemporary electromagnetic radiation on physical and mental health[J]. Industrial Healthy & Occupational Disease, 2021, 47(4): 344-348.
[2] 谭学强, 闫宗瑶, 刘佳音, 等. 电磁屏蔽织物的研究新进展[J]. 天津纺织科技, 2021 (2): 57-60.
TAN Xueqiang, YAN Zongyao, LIU Jiayin, et al. Recent progress in research on electromagnetic shielding fabrics[J]. Tianjin Textile Technology, 2021 (2): 57-60.
[3] 2017全国辐射环境质量报告[R]. 北京: 中华人民共和国生态环境部, 2018:10.
Annual report of the national radiation environment[R]. Beijing: The Ministry of Ecology and Environment of the People's Republic of China, 2018:10.
[4] 王欢欢, 赵晓明. 石墨烯柔性复合材料吸波性能的研究[J]. 丝绸, 2021, 58(1):18-26.
WANG Huanhuan, ZHAO Xiaoming. Study on absorbing property of graphene flexible composite material[J]. Journal of Silk, 2021, 58(1):18-26.
[5] JAGANNADHAM K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical and Materials Transaction B, 2012, 43(4):216-234.
[6] SHUAI J, XIONG L Q, ZHU L, et al. Enhanced strength and excellent transport properties of a superaligned carbon nanotubes reinforced copper matrix laminar composite[J]. Composites Part A, 2016, 88:148-155.
doi: 10.1016/j.compositesa.2016.05.027
[7] 王翊, 郭顺德, 刘元军, 等. 铁磁材料/石墨烯复合吸波涂层织物的研究进展[J]. 材料导报, 2021, 35(17):17178-17184.
WANG Yi, GUO Shunde, LIU Yuanjun, et al. Research progress of ferromagnetic material/graphene composite wave absorbing coating fabrics[J]. Materials Reports, 2021, 35(17):17178-17184.
[8] 计瑜, 刘元军, 赵晓明, 等. 电磁屏蔽织物的研究现状[J]. 现代纺织技术, 2021, 30(8):123-133.
JI Yu, LIU Yuanjun, ZHAO Xiaoming, et al. Research status of electromagnetic shielding fabrics[J]. Advanced Textile Technology, 2021, 30(8):123-133.
[9] 黄绪德, 刘欣. 利用维生素 C 和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
HUANG Xude, LIU Xin. Reduction of graphene oxide with vitamin C and tea polyphenols and its characterization[J]. Materials Reports, 2021, 35(Z1): 83-86.
[10] SHI Y A, GAO X H, QIU J. Synthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foam[J]. Ceramics International, 2019, 45(3):3126-3132.
doi: 10.1016/j.ceramint.2018.10.212
[11] ANKITA H, BIPLAB K D, KYUNGIL K, et al. Microwave absorption and mechanical performance of α-MnO2 nanostructures grown on woven Kevlar fiber/reduced graphene oxide-polyaniline nanofiber array-reinforced polyester resin composites[J]. Composites Part B, 2018, 140: 123-132.
doi: 10.1016/j.compositesb.2017.12.003
[12] 曹机良, 王潮霞. 石墨烯整理蚕丝织物的导电性能[J]. 纺织学报, 2018, 39 (12):84-88.
CAO Jiliang, WANG Chaoxia. Electrical conductivity of silk fabrics finished with graphene[J]. Journal of Textile Research, 2018, 39 (12):84-88.
[13] 方婧, 高晓红, 蔡小斌, 等. 还原氧化石墨烯改性蚕丝织物的抗紫外性能[J]. 印染, 2020, 46(9) :45-48.
FANG Jing, GAO Xiaohong, CAI Xiaobin, et al. UV protection of silk fabric modified with reduced graphene oxide[J]. China Dyeing & Finishing, 2020, 46(9) :45-48.
[14] 虞茹芳, 洪兴华, 祝成炎, 等. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42 (10):126-131, 139.
YU Rufang, HONG Xinghua, ZHU Chengyan, et al. Electrical heating properties of fabrics coated by reduced graphene oxide[J]. Journal of Textile Research, 2021, 42 (10):126-131, 139.
[15] AN B H, PARK B C, YASSI H A, et al. Fabrication of graphene-magnetite multi-granule nanocluster composites for microwave absorption application[J]. Composite Materials, 2019, 53:4097-4103.
doi: 10.1177/0021998319853032
[16] YU Q, WANG Y Y, CHEN P, et al. Reduced graphene oxide-wrapped super dense Fe3O4 nanoparticles with enhanced electromagnetic wave absorption properties[J]. Nanomaterials, 2019, 9(6): 1-11.
doi: 10.3390/nano9010001
[17] 余淼淼. 石墨纳米片及其磁性杂化材料的制备和吸波性能研究[D]. 上海: 东华大学, 2013: 25-28.
YU Miaomiao. Research on preparation and microwave absorption properties of graphite nanosheets and its hybrid magnetic materials[D]. Shanghai: Donghua University, 2013: 25-28.
[18] DUAN Y P, LIU J, ZHANG Y, et al. First-principles calculations of graphenebased polyaniline nano-hybrids for insight of electromagnetic properties and electronic structures[J]. RSC Advances, 2016, 6 (77) : 73915-73923.
doi: 10.1039/C6RA17080C
[19] GAO S, LI H Q, ZHENG L Z, et al. Superhydrophobic and conductive polydimethylsiloxane/titanium dioxide@reduced graphene oxide coated cotton fabric for human motion detection[J]. Cellulose, 2021, 28:7373-7388.
doi: 10.1007/s10570-021-03951-2
[20] 张琪. 石墨烯/铜复合材料的制备及性能研究[D]. 上海: 上海交通大学, 2018:46-51.
ZHANG Qi. Fabrication and properties of graphene/copper composites[D]. Shanghai: Shanghai Jiao Tong University, 2018:46-51.
[21] WANG C, HAN X J, XU P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters, 2011, 98:1-3.
[1] GONG Xuebin, LIU Yuanjun, ZHAO Xiaoming. Research progress of aerogel materials for thermal protection [J]. Journal of Textile Research, 2022, 43(06): 187-196.
[2] HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28.
[3] XUE Baoxia, SHI Yiran, ZHANG Feng, QIN Ruihong, NIU Mei. Preparation flame retardant polyester fabric modified with halogen-free ferric oxide and its property [J]. Journal of Textile Research, 2022, 43(05): 130-135.
[4] WANG Yanping, CHEN Xiaoqian, XIA Wei, FU Jiajia, GAO Weidong, WANG Hongbo, ARTUR Cavaco-Paulo. Application of cutinase in polyester surface modification [J]. Journal of Textile Research, 2022, 43(05): 136-142.
[5] XIE Mengyu, HU Xiaolin, LI Xing, QU Jian'gang. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite [J]. Journal of Textile Research, 2022, 43(04): 117-123.
[6] HE Yang, ZHANG Ruiping, HE Yong, FAN Aimin. Dyeing properties of laser modified polyester fabrics with disperse dyes [J]. Journal of Textile Research, 2022, 43(04): 102-109.
[7] YE Wei, YU Jin, LONG Xiaoyun, SUN Qilong, MA Yan. Electromagnetic wave absorption performance of loofah-based carbon materials [J]. Journal of Textile Research, 2022, 43(04): 33-39.
[8] HE Yingting, LI Min, WANG Ruifeng, WANG Chunxia, FU Shaohai. Dyeing process for polyester fabrics with continuous pad dyeing method [J]. Journal of Textile Research, 2022, 43(03): 110-115.
[9] TAO Xuchen, LI Lin, XU Zhenzhen. Preparation and selective adsorption of calixarene/reduced graphene oxide fibers [J]. Journal of Textile Research, 2022, 43(03): 64-70.
[10] XIE Ailing, YUE Yuhan, AI Xin, WANG Yahui, WANG Yirong, CHEN Xinpeng, CHEN Guoqiang, XING Tieling. Preparation of superhydrophobic polyester fabric modified by tea polyphenols for oil-water separation [J]. Journal of Textile Research, 2022, 43(02): 162-170.
[11] YANG Tengxiang, SHEN Guodong, QIAN Lijiang, HU Huajun, MAO Xue, SUN Runjun. External electric field polarized Ag-BaTiO3/polyester fabric and its photocatalytic properties [J]. Journal of Textile Research, 2022, 43(02): 189-195.
[12] LÜ Lihua, LI Zhen, ZHANG Duoduo. Preparation and properties of sound absorbing composites based on use of waste straw/polycaprolactone [J]. Journal of Textile Research, 2022, 43(01): 28-35.
[13] LI Bo, FAN Wei, GAO Xingzhong, WANG Shujuan, LI Zhihu. Carbon fiber reinforced epoxy based vitrimer composite material closed-loop recycling [J]. Journal of Textile Research, 2022, 43(01): 15-20.
[14] WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33.
[15] CHEN Hainiao, TIAN Wei, JIN Xiaoke, ZHANG Hongxia, LI Yanqing, ZHU Chengyan. Analysis on cross-sectional structure of moso bamboo using three-dimensional microscope imaging [J]. Journal of Textile Research, 2021, 42(12): 49-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!