Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 10-15.doi: 10.13475/j.fzxb.20210803807

• Fiber Materials • Previous Articles     Next Articles

Influence of heat-treatment tension in post-processing on structural properties of high modulus low shrinkage industrial polyester fibers

CHEN Kang1,2, CHEN Gaofeng3, WANG Qun3, WANG Gang3, ZHANG Yumei2(), WANG Huaping2   

  1. 1. State-Locality Joint Engineering Laboratory of Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. Zhejiang Unifull Industrial Fiber Co., Ltd., Huzhou, Zhejiang 313017, China
  • Received:2021-08-06 Revised:2022-03-23 Online:2022-10-15 Published:2022-10-28
  • Contact: ZHANG Yumei E-mail:zhangym@dhu.edu.cn

Abstract:

This research investigates the influence of heat-treatment tension on structural properties of high modulus low shrinkage (HMLS) industrial polyester fibers in post-processing. HMLS industrial polyester fibers was subjected to heat treatment with various tensions (0-0.10 cN/dtex) at 150 ℃ for 5 min. The conformational changes of the samples before and after the heat treatment were analyzed, and the structural factors regulating their properties were discussed. The results show that with the decrease of pre-tension, the breaking strength remains basically unchanged, the tenacity decreases slightly, the initial modulus and the tenacity at the specific elongation of 5.0% decreased obviously, and ultimate elongation increased significantly. The microstructure changes caused by the heat-treatment mainly occur in the amorphous chains, causing lower orientation in the amorphous region, lower trans conformation content, smaller lamellar long period and smaller amorphous thickness. The presence of pre-tension can effectively offset the shrinkage stress of the fiber, decreasing the mobility of molecular chains in the amorphous region, and the degree of mechanical properties and structure changes in the amorphous region is reduced.

Key words: high modulus low shrinkage industrial polyester fiber, heat treatment process, heat-treatment tension, microstructure, mechanical property

CLC Number: 

  • TQ341.5

Fig.1

Tenacity-elongation curves of HMLS fibers with different heat-treatment tensions"

Tab.1

Mechanical parameters of HMLS fibers with different heat-treatment tensions"

样品
编号
断裂
强力/
N
断裂
强度/
(cN·
dtex-1)
断裂
伸长
率/%
初始
模量/
(cN·
dtex-1)
L5/
(cN·
dtex-1)
E4/
%
HMLS 83.5 7.6 11.4 110.7 3.8 5.3
HMLS-1 82.5 7.0 15.0 75.2 1.7 9.6
HMLS-2 81.9 7.1 14.4 76.6 1.9 9.0
HMLS-3 81.7 7.1 14.4 78.0 2.0 8.7
HMLS-4 80.7 7.1 13.8 79.1 2.2 8.0
HMLS-5 81.7 7.3 12.6 89.5 2.7 6.9

Tab.2

Mechanical parameters changes of HMLS fibers with different heat-treatment tensions"

样品
编号
变化率/%
断裂
强力
断裂
强度
断裂伸
长率
初始
模量
L5 E4
HMLS-1 -1.2 -8.2 31.6 -32.1 -54.7 92.5
HMLS-2 -1.9 -6.9 26.3 -30.8 -50.7 81.1
HMLS-3 -2.2 -5.8 26.3 -29.5 -48.2 62.3
HMLS-4 -3.4 -6.2 21.1 -28.5 -41.5 64.2
HMLS-5 -2.2 -4.4 10.5 -19.1 -28.0 30.2

Fig.2

Thermal shrinkage and change rate of linear density of HMLS fibers with different heat-treatment tensions"

Fig.3

WAXS patterns of HMLS fibers with different heat-treatment tensions"

Fig.4

Integral curves of HMLS fibers with different heat-treatment tensions"

Tab.3

Supramolecular structure parameters of HMLS fibers with different heat-treatment tensions"

样品
编号
结晶度/
%
(010)
晶粒
尺寸/
nm
(10)
晶粒
尺寸/
nm
双折
射率
n)
晶区取
向度
(fc)
非晶区
取向度
(fa)
HMLS 63 5.2 3.1 0.204 0.94 0.72
HMLS-1 62 5.3 3.1 0.196 0.93 0.66
HMLS-2 63 5.3 2.9 0.198 0.93 0.68
HMLS-3 62 5.3 2.9 0.198 0.93 0.68
HMLS-4 63 5.3 2.9 0.200 0.95 0.67
HMLS-5 62 5.2 2.9 0.204 0.95 0.71

Fig.5

SAXS patterns of HMLS fibers with different heat-treatment tensions"

Tab.4

Structural parameters from SAXS patterns of HMLS fibers with different heat-treatment tensions"

样品
编号
长周期/
nm
片晶厚
度/nm
非晶区厚
度/nm
片晶直
径/nm
片晶倾斜
角/(°)
HMLS 13.9 7.0 6.9 9.05 41.3
HMLS-1 13.1 6.6 6.5 9.43 39.9
HMLS-2 13.3 6.7 6.6 9.37 41.0
HMLS-3 13.3 6.8 6.5 9.25 40.6
HMLS-4 13.4 6.8 6.6 9.31 41.0
HMLS-5 13.7 7.0 6.7 9.19 41.0

Fig.6

DMA curves (a) and α transtion peak temperature (b) of HMLS fibers with different heat-treatment tensions"

Fig.7

FT-IR test result of HMLS fibers with different heat-treatment tensions. (a)FT-IR spectra;(b) Area of trans-conformation peak"

[1] 陈康, 蒋权, 姬洪, 等. 高强型聚酯工业丝在不同温度下的蠕变断裂机制[J]. 纺织学报, 2020, 41(11): 6-14.
CHEN Kang, JIANG Quan, JI Hong, et al. Temperaure related creep rupture mechanism of high-tenacity polyester industrial fiber[J]. Journal of Textile Reseearch, 2020, 41(11): 6-14.
[2] 欧桂清, 孟静华. 涤纶工业长丝耐湿热性能的研究[J]. 合成纤维, 1993, 22(4): 17-19.
OU Guiqing, MENG Jinghua. Research on heat and moisture resistance of polyester industrial filament[J]. Synthetic Fiber in China, 1993, 22(4): 17-19.
[3] 李鑫. 轮胎用聚酯工业丝的性能研究[J]. 橡胶工业, 2004, 51(9): 537-540.
LI Xin. Study on the properties of polyester industrial yarn for tires[J]. China Rubber Industry, 2004, 51(9): 537-540.
[4] 邹家熊, 于金超, 张烨, 等. 高强低伸型聚酯工业丝受热条件下的应用特性变化[J]. 合成纤维, 2019, 48(2): 11-15.
ZOU Jiaxiong, YU Jinchao, ZHANG Ye, et al. Application characteristics of high strength and low stretch polyester industrial yarn under heating conditions[J]. Synthetic Fiber in China, 2019, 48(2): 11-15.
[5] 周正华, 王希岳. 涤纶工业用丝的尺寸稳定性及力学松驰[J]. 合成技术及应用, 1998, 13(3): 13-18.
ZHOU Zhenghua, WANG Xiyue. Synthetic technology & application, dimensional stability and mechanical relaxation of polyester industrial yarn[J]. Synthesis Technology and Applications 1998, 13(3): 13-18.
[6] YAN T W, YAO Y B, JIN H, et al. Elastic response of copolyether-ester fiber on its phase morphology under different heat-treatment condition[J]. Journal of Polymer Research, 2016, 23(11): 226-233.
doi: 10.1007/s10965-016-1118-y
[7] GUPTA V B, KUMAR S. Intrinsic birefringence of poly(ethylene terephthalate)[J]. Journal of Polymer Science Part A:Polymer Chemistry, 1979, 17(8): 1307-1315.
[8] CHE J, LOCKER C R, LEE S, et al. Plastic deformation of semicrystalline polyethylene by X-ray scattering: comparison with atomistic simulations[J]. Macromolecules, 2013, 46(13): 5279-5289.
doi: 10.1021/ma4005007
[9] YU J C, CHEN K, LI X Y, et al. Performance and structure changes of the aromatic co-polysulfonamide fibers during thermal-oxidative aging process[J]. Journal of Applied Polymer Science, 2016, 133(41): 44078-44088.
[10] JIANG G S, HUANG W F, LI L, et al. Structure and properties of regenerated cellulose fibers from different technology processes[J]. Carbohydrate Polymers, 2012, 87(3): 2012-2018.
doi: 10.1016/j.carbpol.2011.10.022
[11] MUTHY N S, BEDNARCZYK C, MOORE R A F, et al. Analysis of small-angle X-ray scattering from fibers: structural changes in nylon 6 upon drawing and annealing[J]. Journal of Polymer Science Part B: Polymer Physics, 1996, 34(5): 821-835.
doi: 10.1002/(SICI)1099-0488(19960415)34:5<821::AID-POLB1>3.0.CO;2-P
[12] MUTHY N S, GRUBB D T. Tilted lamellae in an affinely deformed 3D macrolattice and elliptical features in small-angle scattering[J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(8): 1277-1286.
doi: 10.1002/polb.20778
[1] WANG Jin, HU Kairui, ZHANG Liufei, CHEN Lei. Application progress of fiber materials in flexible wearable zinc batteries [J]. Journal of Textile Research, 2022, 43(10): 192-199.
[2] GAO Feng, SUN Yanlin, XIAO Shunli, CHEN Wenxing, LÜ Wangyang. Microstructure and properties of polyester composite fibers with different drafting ratios [J]. Journal of Textile Research, 2022, 43(08): 34-39.
[3] SUN Ying, LI Duanxin, YU Yang, CHEN Jialin, FAN Wanyue. Degumming of hemp fibers using Fenton method and fiber properties [J]. Journal of Textile Research, 2022, 43(08): 95-100.
[4] HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28.
[5] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[6] SUN Huanwei, ZHANG Heng, CUI Jingqiang, ZHU Feichao, WANG Guofeng, SU Tianyang, ZHEN Qi. Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process [J]. Journal of Textile Research, 2022, 43(06): 86-93.
[7] ZHAO Bobo, WANG Liang, LI Jingyu, WAN Gang, XIA Zhaopeng, LIU Yong. Preparation and properties of hexamethylenetetramine cross-linked phenolic fibers [J]. Journal of Textile Research, 2022, 43(05): 57-62.
[8] SHAO Lingda, HUANG Jinbo, JIN Xiaoke, TIAN Wei, ZHU Chengyan. Effect of silane coupling agent modification on properties of glass fiber fabric reinforced polyphenylene sulfide composites [J]. Journal of Textile Research, 2022, 43(04): 68-73.
[9] FANG Meiqi, WANG Qian, LI Yan, LI Chaojing, LI Hao, WANG Lu. Design and in-vitro mechanical property analyses of sling for female stress urinary incontinence [J]. Journal of Textile Research, 2022, 43(03): 38-43.
[10] CHEN Yong, WU Jing, WANG Chaosheng, PAN Xiaohu, LI Naixiang, DAI Junming, WANG Huaping. Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber [J]. Journal of Textile Research, 2022, 43(02): 37-43.
[11] MIN Xiaobao, PAN Zhijuan. Quality and performance of biomass fiber/pineapple leaf fiber multi-component blended yarn [J]. Journal of Textile Research, 2022, 43(01): 74-79.
[12] WANG Songli, WANG Meilin, ZHOU Xiang, LIU Zunfeng. Research progress of artificial spider silk and imitation spider silk fiber [J]. Journal of Textile Research, 2021, 42(12): 174-179.
[13] SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88.
[14] REN Libing, CHEN Li, JIAO Wei. Microstructure characterization of multi-layer interlocked woven preforms based on quadratic functions [J]. Journal of Textile Research, 2021, 42(08): 76-83.
[15] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!