Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 24-30.doi: 10.13475/j.fzxb.20210804907

• Fiber Materials • Previous Articles     Next Articles

Acoustic properties of palm fiber felt/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) hot-pressed composites

ZHANG Yi1(), SHAO Lifeng1, YANG Bin1, GAO Jinxia2, YU Chongwen3   

  1. 1. Zhejiang Industry Polytechnic College, Shaoxing, Zhejiang 312000, China
    2. Shaoxing Touzhen Textile Co., Ltd., Shaoxing, Zhejiang 312000, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2021-08-10 Revised:2022-03-26 Online:2022-10-15 Published:2022-10-28

Abstract:

In order to supplement the decreased production of jute-based acoustic composite materials for automobile interior, sound absorption properties of palm fiber felts/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites were studied. Following Johnson-Allard acoustic absorption model, the effects of different palm fiber felts/PHBV mass ratio, palm fiber surface density, palm fiber linear density, palm fiber gradient structure and porous pulverized coal ash aggregate on acoustic absorption were analyzed, inparalell to the investigation into the tensile properties, thermal stability properties, infrared spectrum and cross section of SEM morphology. The results show that the best mass ratio of palm fiber felt to PHBV for acoustic performance was 40∶60, the linear density of palm fiber was 14.5 dtex and the gradient structure of palm fiber mat was 143.3/102.5 g/m2. The average was the highest (0.53) for frequencies between 200 and 1 600 Hz. The addition of 5% porous coal ash ceramsite could increase the acoustic composite materials to 0.66, which has the potential to partially replace jute for the making acoustic composite materials.

Key words: palm fiber felt, composite material, gradient structure, acoustic composite materials, flow resistance

CLC Number: 

  • TS102.221

Tab.1

Impact of mass ratio of palm fiber felts and PHBV on acoustic absorption coefficient"

质量比 不同频率下复合材料的吸声系数 吸声系数
平均值
125 Hz 250 Hz 375 Hz 500 Hz 600 Hz 800 Hz 1 000 Hz 1 200 Hz 1 500 Hz 1 600 Hz
30∶70 0.09 0.15 0.19 0.26 0.34 0.43 0.48 0.52 0.55 0.57 0.36
40∶60 0.19 0.24 0.35 0.51 0.65 0.69 0.72 0.74 0.78 0.81 0.57
50∶50 0.15 0.21 0.27 0.40 0.51 0.59 0.61 0.66 0.71 0.73 0.48
60∶40 0.13 0.19 0.23 0.34 0.45 0.55 0.60 0.63 0.68 0.71 0.45

Tab.2

Impact of density of palm fiber felts on acoustic absorption coefficient"

面密度/
(g·m-2)
不同频率下复合材料的吸声系数 吸声系数
平均值
125 Hz 250 Hz 375 Hz 500 Hz 600 Hz 800 Hz 1 000 Hz 1 200 Hz 1 500 Hz 1 600 Hz
102.5 0.11 0.10 0.13 0.15 0.20 0.26 0.39 0.45 0.56 0.60 0.28
143.3 0.12 0.11 0.16 0.23 0.33 0.45 0.51 0.59 0.63 0.68 0.38
206.2 0.11 0.09 0.12 0.16 0.19 0.24 0.35 0.42 0.46 0.51 0.26

Tab.3

Impact of liner density of palm fiber on acoustic absorption coefficient"

线密度/
dtex
不同频率下复合材料的吸声系数 吸声系数
平均值
125 Hz 250 Hz 375 Hz 500 Hz 600 Hz 800 Hz 1 000 Hz 1 200 Hz 1 500 Hz 1 600 Hz
14.5 0.12 0.11 0.22 0.29 0.37 0.49 0.54 0.60 0.68 0.70 0.41
15.8 0.11 0.09 0.18 0.24 0.29 0.38 0.47 0.52 0.57 0.63 0.35
16.5 0.09 0.08 0.15 0.18 0.23 0.28 0.35 0.41 0.45 0.52 0.27

Tab.4

Impact of gradient structures of palm fiber felt on acoustic absorption coefficient"

梯度结构
(g·m-2)
不同频率下复合材料的吸声系数 吸声系数
平均值
125 Hz 250 Hz 375 Hz 500 Hz 600 Hz 800 Hz 1 000 Hz 1 200 Hz 1 500 Hz 1 600 Hz
102.5/143.3 0.05 0.13 0.24 0.31 0.37 0.42 0.47 0.52 0.57 0.64 0.37
122.9/122.9 0.06 0.15 0.29 0.35 0.43 0.49 0.54 0.59 0.63 0.74 0.43
143.3/102.5 0.09 0.19 0.35 0.46 0.55 0.61 0.68 0.73 0.77 0.83 0.53

Tab.5

Impact of mixing fly ash aggregates on acoustic absorption coefficient"

质量分
数/%
不同频率下复合材料的吸声系数 吸声系数
平均值
125 Hz 250 Hz 375 Hz 500 Hz 600 Hz 800 Hz 1 000 Hz 1 200 Hz 1 500 Hz 1 600 Hz
0 0.09 0.19 0.35 0.46 0.55 0.61 0.68 0.73 0.77 0.83 0.53
5 0.14 0.27 0.47 0.60 0.69 0.82 0.86 0.89 0.92 0.93 0.66
10 0.13 0.24 0.43 0.57 0.66 0.71 0.74 0.78 0.81 0.86 0.59

Fig.1

SEM images of palm fiber (a) and palm fiber felts/PHBV composites (b)"

Fig.2

Infrared spectrum of palm fiber felts/PHBV composites"

Fig.3

TG(a) and DTG(b) curves of palm fiber felt/PHBV acoustic absorption composites"

Fig.4

Stress-strain curve of palm fiber felts/PHBV acoustic absorption composites"

[1] WICKLEIN B, KOCJAN A, SALAZAR-ALVAREZ G, et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nano-cellulose and graphene oxide[J]. Nature Nanotechnology, 2015, 10(3):277-278.
doi: 10.1038/nnano.2014.248
[2] AHMAD F, CHOI H S, PARK M K. A review: natural fiber composites selection in view of mechanical, light weight, and economic properties[J]. Macromolecular Materials and Engineering, 2015, 300(1):10-24.
doi: 10.1002/mame.201400089
[3] KHAN M. Effect of chemical treatments on the physical properties of non-woven jute/PLA bio-composites[J]. Bio-Resources, 2015, 10(4):7386-7404.
[4] 范芳维, 刘拯, 陈益人, 等. 棕榈纤维的制备及基本性能测试[J]. 针织工业, 2021(11):26-28.
FAN Fangwei, LIU Zheng, CHEN Yiren, et al. Preparation and properties study of palm fiber[J]. Knitting Industris, 2021(11): 26-28.
[5] 张毅, 高金霞, 戴鸽. 棕叶纤维的精细化加工及性能[J]. 印染助剂, 2019, 36(3):45-47.
ZHANG Yi, GAO Jinxia, DAI Ge. Refining and properties of palm leaf fiber[J]. Textile Auxiliaries, 2019, 36(3):45-47.
[6] 万玉峰, 王少松, 姜海涛. 轿车针刺非织造布外轮罩材料设计与吸声性能比较[J]. 合成纤维, 2020, 49(6):49-51.
WAN Yufeng, WANG Shaosong, JIANG Haitao. Material designs of needle punching non-woven for car wheelhouse and sound absorption performance comparisons[J]. Synthetic Fiber in China, 2020, 49(6):49-51.
[7] 董凯辉, 王习文. 硅溶胶/植物纤维吸声材料的制备及其性能研究[J]. 中国造纸, 2020, 39(8):57-61.
DONG Kaihui, WANG Xiwen. Preparation and characterization of silicasol/plant fiber sound absorbing material by foam forming[J]. China Pulp & Paper, 2020, 39(8):57-61.
[8] 王建辉, 李沛沛. 聚合物-粉煤灰陶粒多孔降噪声屏障材料制备及影响因素分析[J]. 长安大学学报(自然科学版), 2020, 40(5):27-36.
WANG Jianhui, LI Peipei. Preparation and analysis of influencing factors of polymer-fly ash aggregate porous noise reduction barrier material[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(5):27-36.
[9] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10):29-33.
SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure[J]. Journal of Textile Research, 2020, 41(10):29-33.
[10] 吴量, 刘淼, 刘学文, 等. 多层多孔吸声材料结构参数优化设计[J]. 应用声学, 2021, 40(3):449-456.
WU Liang, LIU Miao, LIU Xuewen, et al. Optimal design of structural parameters of multi-layer porous sound-absorbing materials[J]. Journal of Applied Acoustics, 2021, 40(3):449-456.
[11] 李涛, 何宇辰, 姚智敏, 等. 纤维参数对聚酯纤维板吸声性能的影响研究[J]. 功能材料, 2021, 52(6):6097-6099.
LI Tao, HE Yuchen, YAO Zhimin, et al. Effect of fiber parameter on the sound absorption property of polyester fiber panel[J]. Journal of Function Materials, 2021, 52(6): 6097-6099.
[12] RAHIMABADY M, STATHARAS E C, YAO K, et al. Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption[J]. Applied Physics Letters, 2017, 111(24):241601-241602.
doi: 10.1063/1.5010743
[13] JOHNSON D L, KOPLIK J, DASHEN R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J]. Journal of Fluid Mechanics, 1987, 176:379-380.
doi: 10.1017/S0022112087000727
[14] 马大猷. 噪声与振动控制手册[M]. 北京: 机械工业出版社, 2002:395-398.
MA Dayou. The control of noise and oscillation[M]. Beijing: China Machine Press, 2002:395-398.
[15] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid in low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168-169.
doi: 10.1121/1.1908239
[16] DELANY M E, BAZLEY E N. Acoustical properties of fibrous absorbent materials[J]. Applied Acoustics, 1970, 3(2):105-106.
doi: 10.1016/0003-682X(70)90031-9
[17] KINO N, UENO T. Evaluation of acoustical and non-acoustical properties of sound absorbing materials made of polyester fibers of various cross-sectional shapes[J]. Applied Acoustics, 2008, 69(7):575-582.
doi: 10.1016/j.apacoust.2007.02.003
[18] 马大猷. 现代声学理论基础[M]. 北京: 科学出版社, 2006:206-207.
MA Dayou. Theoretical basis of modern acoustics[M]. Beijing: Science Press, 2006:206-207.
[1] FANG Zhouqian, MIAO Peiyuan, JIN Xiaoke, ZHU Chengyan, TIAN Wei. Nondestructive testing on damage of carbon fiber composites using ultrasonic C-scanning [J]. Journal of Textile Research, 2022, 43(10): 71-76.
[2] YANG Honglin, XIANG Wei, DONG Shuxiu. Preparation and electromagnetic shielding properties of polyester fabric based nano-copper/reduced graphene oxide composites [J]. Journal of Textile Research, 2022, 43(08): 107-112.
[3] GONG Xuebin, LIU Yuanjun, ZHAO Xiaoming. Research progress of aerogel materials for thermal protection [J]. Journal of Textile Research, 2022, 43(06): 187-196.
[4] HUANG Yaoli, LU Cheng, JIANG Jinhua, CHEN Nanliang, SHAO Huiqi. Thermal mechanical properties of polyimide fiber-reinforced polydimethylsiloxane flexible film [J]. Journal of Textile Research, 2022, 43(06): 22-28.
[5] YE Wei, YU Jin, LONG Xiaoyun, SUN Qilong, MA Yan. Electromagnetic wave absorption performance of loofah-based carbon materials [J]. Journal of Textile Research, 2022, 43(04): 33-39.
[6] LÜ Lihua, LI Zhen, ZHANG Duoduo. Preparation and properties of sound absorbing composites based on use of waste straw/polycaprolactone [J]. Journal of Textile Research, 2022, 43(01): 28-35.
[7] LI Bo, FAN Wei, GAO Xingzhong, WANG Shujuan, LI Zhihu. Carbon fiber reinforced epoxy based vitrimer composite material closed-loop recycling [J]. Journal of Textile Research, 2022, 43(01): 15-20.
[8] CHEN Hainiao, TIAN Wei, JIN Xiaoke, ZHANG Hongxia, LI Yanqing, ZHU Chengyan. Analysis on cross-sectional structure of moso bamboo using three-dimensional microscope imaging [J]. Journal of Textile Research, 2021, 42(12): 49-54.
[9] WEI Xiaoling, LI Ruixue, QIN Zhuo, HU Xinrong, LIN Fusheng, LIU Lingshan, GONG Xiaozhou. Key technologies for formation of warp T-shape preforms [J]. Journal of Textile Research, 2021, 42(11): 51-55.
[10] REN Libing, CHEN Li, JIAO Wei. Microstructure characterization of multi-layer interlocked woven preforms based on quadratic functions [J]. Journal of Textile Research, 2021, 42(08): 76-83.
[11] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[12] QIAO Cancan, JIANG Yaming, QI Yexiong, LIN Wenni, ZHANG Ye. Characterization of shock wave propagation in ceramic reinforced weft-knitted biaxial multilayer yarnlining fabric and woven fabrics composites [J]. Journal of Textile Research, 2021, 42(05): 84-89.
[13] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[14] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[15] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!