Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 75-80.doi: 10.13475/j.fzxb.20210805206

• Textile Engineering • Previous Articles     Next Articles

Analysis of quasi-brittle fracture performance of glass fiber composites based on boundary effect model

ZHU Lütao1,2, HAO Li1, SHEN Wei2, ZHU Chengyan1()   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou,Zhejiang 310018, China
    2. Shaoxing Baojing Composite Materials Co., Ltd., Shaoxing, Zhejiang 312000, China
  • Received:2021-08-11 Revised:2022-03-22 Online:2022-07-15 Published:2022-07-29
  • Contact: ZHU Chengyan E-mail:cyzhu@zstu.edu.cn

Abstract:

In order to solve the quasi-brittle fracture problem of glass fiber composites, the thickness of the single-layer prepreg of the glass fiber composite materials was introduced, based on the boundary effect model, as a microstructure parameter to establish an analytical equation. The quasi-brittle fracture parameters such as tensile strength and fracture toughness were calculated based on the peak load of the specimen, and the mean value of fracture parameters was obtained after normal distribution analysis. The results indicate that the tensile strength is 169.48 MPa and the fracture toughness is 20.34 MPa·m1/2, covering almost all discrete points within the reliability range of 95%. Fitting the parameters of the specimen together, the linear fitting curve between the fracture load and the equivalent area was obtained with the error being only 4.95%.

Key words: glass fiber composites, boundary effect, tensile strength, fracture toughness, quasi-brittle fracture performance

CLC Number: 

  • TB332

Fig.1

Material fracture failure modes induced by BEM"

Fig.2

Schematic diagram of glass fiber composite by 3-p-b"

Tab.1

10 sets of samples with different thickness B and seam height ratio α"

编号 组别 高度W/mm 厚度B/mm 跨度S/mm 跨高比(S/W) 初始划痕a0/mm 缝高比α
1# S-3-4-0 12 3 48 4 0 0
2# S-3-4-0.041 67 12 3 48 4 0.5 0.041 67
3# S-3-4-0.1 12 3 48 4 1.2 0.1
4# S-3-4-0.2 12 3 48 4 2.4 0.2
5# S-4-4-0 12 4 48 4 0 0
6# S-4-4-0.041 67 12 4 48 4 0.5 0.041 67
7# S-4-4-0.2 12 4 48 4 2.4 0.2
8# S-5.5-4-0 12 5.5 48 4 0 0
9# S-5.5-4-0.041 67 12 5.5 48 4 0.5 0.041 67
10# S-5.5-4-0.2 12 5.5 48 4 2.4 0.2

Fig.3

Load-displacement curves of materials (a) and simulated fracture processes (b)"

Tab.2

Statistical analysis of fracture parameters"

编号 a0/
mm
抗拉强度/MPa 断裂韧性/(MPa·m1/2)
最大值 最小值 最大值 最小值
1# 0 201.39 186.84 24.17 22.42
2# 0.5 167.19 131.61 20.06 15.80
3# 1.2 217.20 184.05 26.06 22.09
4# 2.4 221.40 116.91 26.57 14.03
5# 0 158.11 138.32 18.97 16.60
6# 0.5 155.11 137.57 18.61 16.51
7# 2.4 217.96 209.95 25.85 21.93
8# 0 148.51 165.85 21.62 17.82
9# 0.5 163.27 138.54 16.62 19.60
10# 2.4 184.43 152.90 22.14 17.62

Fig.4

Result analysis of all glass fiber composite materials samples. (a)Linear graph of Pmax-Ae with 95% reliability; (b)Double logarithm nonlinear correlation graph of σn-ae with 95% reliability"

Tab.3

Analysis of ftof glass fiber composite materials with different slit height ratiosMPa"

编号 最小值 最大值 中值 平均值
1# 186.84 201.39 189.04 192.83
2# 131.61 167.19 149.53 152.47
3# 184.05 217.20 190.28 199.26
4# 116.91 221.40 171.55 170.35

Tab.4

Analysis of KIC of glass fiber composite materials with different slit height ratiosMPa·m1/2"

编号 最小值 最大值 中值 平均值
1# 22.42 24.17 22.68 23.14
2# 15.80 20.06 17.94 18.30
3# 22.09 26.06 22.83 23.91
4# 14.03 26.57 20.59 20.44

Fig.5

Result analysis of glass fiber composite materials of conventional size. (a)Linear graph of Pmax-Ae with 95% reliability; (b)Double logarithm nonlinear correlation graph of σn-ae with 95% reliability"

[1] 蔡冯杰, 祝成炎, 田伟, 等. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18.
CAI Fengjie, ZHU Chengyan, TIAN Wei, et al. Glass fiber reinforced polylactic acid composites based on 3D printing technology[J]. Journal of Textile Research, 2017, 38(10): 13-18.
[2] 王聪, 竺铝涛, 高晓平. 纳米增韧三维正交玻璃纤维机织物增强环氧树脂复合材料的力学性能[J]. 复合材料学报, 2020, 37(2): 252-259.
WANG Cong, ZHU Lütao, GAO Xiaoping. Mechanical properties of 3D orthogonal glass fiber woven fabric reinforced epoxy resin composites with nano clay modification[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 252-259.
[3] BAŽANT. Scaling of quasibrittle fracture: asymptotic analysis[J]. International Journal of Fracture, 1997, 83(1): 19-40.
doi: 10.1023/A:1007387823522
[4] HU Xiaozhi, FOLKER Wittmann. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics, 2000, 65(2): 209-221.
doi: 10.1016/S0013-7944(99)00123-X
[5] YUAN B, HU Y, HU X. Critical bending load of CFRP panel with shallow surface scratch determined by a tensile strength model[J]. Composites Science and Technology, 2020.DOI: 10.1016/j.compscitech.2020.108072.
doi: 10.1016/j.compscitech.2020.108072.
[6] 张冬梅. 聚乳酸/玻璃纤维复合材料性能及发泡行为研究[D]. 济南: 山东大学, 2017:49-52.
ZHANG Dongmei. Study on properties and foam behaviors of polylactic acid/glass fiber composites[D]. Jinan: Shandong University, 2017:49-52.
[7] 南洪尧, 李岳, 李志刚. 玻璃纤维增强环氧树脂力学性能研究[J] .湘潭大学自然科学学报, 2018, 40(3):46-50.
NAN Hongyao, LI Yue, LI Zhigang. A study on the mechanical properties of glass fiber/epoxy resin composites[J]. Natural Science Journal of Xiangtan University, 2018, 40(3):46-50.
[8] HU Xiaozhi. An asymptotic approach to size effect on fracture toughness and fracture energy of composites[J]. Engineering Fracture Mechanics, 2002, 69(5): 555-564.
doi: 10.1016/S0013-7944(01)00102-3
[9] 徐平, 胡晓智, 张敏霞, 等. 考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用[J]. 工程力学, 2018, 35(10): 75-84.
XU Ping, HU Xiaozhi, ZHANG Minxia, et al. Quasi-brittle fracture model and application on concrete considering aggregate volume content effect[J]. Engineering Mechanics, 2018, 35(10): 75-84.
[10] 杜敏, 武亮, 张建铭. 不同初始缝高比的混凝土断裂试验及边界效应分析[J]. 水利水电技术, 2019, 50(11): 141-148.
DU Min, WU Liang Min, ZHANG Jianming. Analysis on fracture experiment and boundary effect of concrete with different initial crack-depth ratios[J]. Water Resources and Hydropower Engineering, 2019, 50(11): 141-148.
[11] LIU Wen, YU Ying, HU Xiaozhi, et al. Quasi-brittle fracture criterion of bamboo-based fiber composites in transverse direction based on boundary effect model[J]. Composite Structures, 2019, 220: 347-354.
doi: 10.1016/j.compstruct.2019.04.008
[12] ZHAO Yanhua, LIU Yang, XU Bohan. Effect of coarse aggregate size distribution on fracture toughness of concrete based on boundary effect model[J]. Theoretical and Applied Fracture Mechanics, 2021.DOI: 10.1016/j.tafmec.2021.102970.
doi: 10.1016/j.tafmec.2021.102970.
[13] WANG J, WU Q, GUAN J, et al. Numerical simulation on size effect of fracture toughness of concrete based on mesomechanics[J]. Materials, 2020, 13(6): 1306-1370.
doi: 10.3390/ma13061306
[14] HU X, GUAN J, WANG Y, et al. Comparison of boundary and size effect models based on new developments[J]. Engineering Fracture Mechanics, 2017, 175: 146-167.
doi: 10.1016/j.engfracmech.2017.02.005
[15] ZHANG C, HU X, SERCOMBE T, et al. Prediction of ceramic fracture with normal distribution pertinent to grain size[J]. Acta Materialia, 2018, 145: 41-48.
doi: 10.1016/j.actamat.2017.11.041
[16] WISNOM. The relationship between tensile and flexural strength of unidirectional composites[J]. Journal of Composite Materials, 1992, 26(8):1173-1180.
doi: 10.1177/002199839202600805
[1] TAN Yanjun, HUO Qian, LIU Shurui. Preparation and ultraviolet light resistance of poly(p-phenylene benzoxazole) fiber coated with nano titanium dioxide [J]. Journal of Textile Research, 2021, 42(07): 69-75.
[2] LIU Xiaohan, TIAN Miao, WANG Yunyi, LI Jun. Research progress in effect of flame-retardant fabric aging on its tensile strength [J]. Journal of Textile Research, 2020, 41(11): 181-188.
[3] ZHU Weiwei, CAI Chong, ZHANG Cong, LONG Jiajie, SHI Meiwu. Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber [J]. Journal of Textile Research, 2020, 41(03): 8-14.
[4] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester/ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
[5] SONG Xing, ZHU Chengyan, CAI Fengjie, LÜ Zhining, TIAN Wei. Influence of alkali treatment on mechanical properties of polyester/photosensitive resin composites [J]. Journal of Textile Research, 2019, 40(07): 97-102.
[6] LIU Qiannan, ZHANG Han, LIU Xinjin, SU Xuzhong. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[7] . Prediction model on tensile strength of air jet vortex spinning yarn and its verification [J]. Journal of Textile Research, 2018, 39(10): 32-37.
[8] . Preparation and properties of wet-spinning graphene fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 1-5.
[9] . Influence of tensile residual stress on mechanical properties of poly(vinylidene fluoride) fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 28-33.
[10] . Sizing of polylactic acid filaments at lower temperature [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 85-90.
[11] . Low-loss optimization of cotton/ hemp blending process [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 35-39.
[12] . Preparation and properties of polylactic acid coated phase change material composite fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 67-72.
[13] . Structure and physicochemical properties of polyester/polyamide copolymer fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 1-7.
[14] . Melt spinning of poly(vinylidene fluoride) fibers with high strength [J]. Journal of Textile Research, 2015, 36(06): 1-6.
[15] . Establishment of a two-ply yarn's geometric and strength model and its infouences on mechanical properties [J]. Journal of Textile Research, 2015, 36(02): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .