Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 75-80.doi: 10.13475/j.fzxb.20210805206
• Textile Engineering • Previous Articles Next Articles
ZHU Lütao1,2, HAO Li1, SHEN Wei2, ZHU Chengyan1()
CLC Number:
[1] | 蔡冯杰, 祝成炎, 田伟, 等. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18. |
CAI Fengjie, ZHU Chengyan, TIAN Wei, et al. Glass fiber reinforced polylactic acid composites based on 3D printing technology[J]. Journal of Textile Research, 2017, 38(10): 13-18. | |
[2] | 王聪, 竺铝涛, 高晓平. 纳米增韧三维正交玻璃纤维机织物增强环氧树脂复合材料的力学性能[J]. 复合材料学报, 2020, 37(2): 252-259. |
WANG Cong, ZHU Lütao, GAO Xiaoping. Mechanical properties of 3D orthogonal glass fiber woven fabric reinforced epoxy resin composites with nano clay modification[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 252-259. | |
[3] |
BAŽANT. Scaling of quasibrittle fracture: asymptotic analysis[J]. International Journal of Fracture, 1997, 83(1): 19-40.
doi: 10.1023/A:1007387823522 |
[4] |
HU Xiaozhi, FOLKER Wittmann. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics, 2000, 65(2): 209-221.
doi: 10.1016/S0013-7944(99)00123-X |
[5] |
YUAN B, HU Y, HU X. Critical bending load of CFRP panel with shallow surface scratch determined by a tensile strength model[J]. Composites Science and Technology, 2020.DOI: 10.1016/j.compscitech.2020.108072.
doi: 10.1016/j.compscitech.2020.108072. |
[6] | 张冬梅. 聚乳酸/玻璃纤维复合材料性能及发泡行为研究[D]. 济南: 山东大学, 2017:49-52. |
ZHANG Dongmei. Study on properties and foam behaviors of polylactic acid/glass fiber composites[D]. Jinan: Shandong University, 2017:49-52. | |
[7] | 南洪尧, 李岳, 李志刚. 玻璃纤维增强环氧树脂力学性能研究[J] .湘潭大学自然科学学报, 2018, 40(3):46-50. |
NAN Hongyao, LI Yue, LI Zhigang. A study on the mechanical properties of glass fiber/epoxy resin composites[J]. Natural Science Journal of Xiangtan University, 2018, 40(3):46-50. | |
[8] |
HU Xiaozhi. An asymptotic approach to size effect on fracture toughness and fracture energy of composites[J]. Engineering Fracture Mechanics, 2002, 69(5): 555-564.
doi: 10.1016/S0013-7944(01)00102-3 |
[9] | 徐平, 胡晓智, 张敏霞, 等. 考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用[J]. 工程力学, 2018, 35(10): 75-84. |
XU Ping, HU Xiaozhi, ZHANG Minxia, et al. Quasi-brittle fracture model and application on concrete considering aggregate volume content effect[J]. Engineering Mechanics, 2018, 35(10): 75-84. | |
[10] | 杜敏, 武亮, 张建铭. 不同初始缝高比的混凝土断裂试验及边界效应分析[J]. 水利水电技术, 2019, 50(11): 141-148. |
DU Min, WU Liang Min, ZHANG Jianming. Analysis on fracture experiment and boundary effect of concrete with different initial crack-depth ratios[J]. Water Resources and Hydropower Engineering, 2019, 50(11): 141-148. | |
[11] |
LIU Wen, YU Ying, HU Xiaozhi, et al. Quasi-brittle fracture criterion of bamboo-based fiber composites in transverse direction based on boundary effect model[J]. Composite Structures, 2019, 220: 347-354.
doi: 10.1016/j.compstruct.2019.04.008 |
[12] |
ZHAO Yanhua, LIU Yang, XU Bohan. Effect of coarse aggregate size distribution on fracture toughness of concrete based on boundary effect model[J]. Theoretical and Applied Fracture Mechanics, 2021.DOI: 10.1016/j.tafmec.2021.102970.
doi: 10.1016/j.tafmec.2021.102970. |
[13] |
WANG J, WU Q, GUAN J, et al. Numerical simulation on size effect of fracture toughness of concrete based on mesomechanics[J]. Materials, 2020, 13(6): 1306-1370.
doi: 10.3390/ma13061306 |
[14] |
HU X, GUAN J, WANG Y, et al. Comparison of boundary and size effect models based on new developments[J]. Engineering Fracture Mechanics, 2017, 175: 146-167.
doi: 10.1016/j.engfracmech.2017.02.005 |
[15] |
ZHANG C, HU X, SERCOMBE T, et al. Prediction of ceramic fracture with normal distribution pertinent to grain size[J]. Acta Materialia, 2018, 145: 41-48.
doi: 10.1016/j.actamat.2017.11.041 |
[16] |
WISNOM. The relationship between tensile and flexural strength of unidirectional composites[J]. Journal of Composite Materials, 1992, 26(8):1173-1180.
doi: 10.1177/002199839202600805 |