Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 80-88.doi: 10.13475/j.fzxb.20210805609

• Textile Engineering • Previous Articles     Next Articles

Multi-objective optimization of spinning process parameters based on nondominated sorting genetic algorithm II

SHAO Jingfeng(), SHI Xiaomin   

  1. School of Management, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2021-08-12 Revised:2021-11-05 Online:2022-01-15 Published:2022-01-28

Abstract:

In order to optimize of parameters of the spinning production process and to reduce energy consumption, an nondominated sorting genetic algorithm II (NSGA-II) algorithm-based multi-objective optimization method was proposed. By analyzing the spinning process, the process parameters that significantly affect the quality and energy consumption of spun yarn were identified, and the key quality evaluation indexes for evaluating the quality of spun yarn were extracted. The quality evaluation indexes were transformed into comprehensive quality indexes by combining the gray correlation theory, while the correlation relationship between the process parameters and comprehensive quality indexes and carbon emission is fitted by using the second-order response surface method, leading to the establishment of the multi-objective optimization model for spinning process parameters. The NSGA-II algorithm was used to optimize the model, and the optimal process parameters were obtained. The results demonstrate that the quality evaluation indexes were improved using the optimized process conditions, with a reduction carbon emission by 5.77% on average compared with the original conditions.

Key words: multi-objective optimization, process optimization, carbon emission, yarn quality, nondominated sorting genetic algorithm II

CLC Number: 

  • TS111.9

Tab.1

JC7.29 tex quality indicators"

纱线编号 单强CV值/
%
百米质量
偏差/%
条干CV值/
%
细节/
(个·km-1)
粗节/
(个·km-1)
棉结/
(个·km-1)
毛羽
H
单纱强力/
cN
断裂强度/
(cN·tex-1)
1 9.1 0.7 13.2 6 12 81 2.21 164.9 23.3
2 9.4 0.9 13.1 8 23 125 2.94 155.7 22.5
3 9.2 0.4 15.3 19 69 132 3.02 158.8 22.3
4 10.9 0.8 13.5 7 81 130 3.01 152.8 21.8
20 9.6 0.2 14.3 44 82 77 2.37 164.9 22.4
权重值 0.10 0.09 0.12 0.11 0.11 0.11 0.14 0.08 0.14

Fig.1

Carbon emission metering model of spinning process"

Fig.2

Multi-objective optimization flow chart of spinning process parameters based on NSGA-II"

Tab.2

SNR processing of spinning quality index data"

试验
编号
质量指标数据信噪比处理
条干
CV值
断裂
强度
细节 粗节 棉结 毛羽
H
1 -22.44 27.84 -19.00 -29.00 -35.91 -7.66
2 -22.59 27.78 -19.72 -28.44 -35.59 -9.36
3 -22.69 27.78 -18.98 -28.26 -35.87 -9.23
4 -22.42 27.94 -18.25 -27.28 -35.03 -7.53
62 -22.68 27.74 -19.96 -29.75 -36.73 -8.87

Tab.3

Weight of spinning quality index"

参数
类型
质量指标数据信噪比处理
条干
CV值
断裂
强度
细节 粗节 棉结 毛羽
H
标准差Sj 0.253 0.233 0.228 0.231 0.221 0.202
信息量Cj 0.686 0.482 0.878 0.551 0.544 0.779
权重Wj 0.175 0.123 0.224 0.141 0.139 0.199

Tab.4

Grey correlation"

试验编号 灰色关联系数 Q
条干CV值 断裂强度 细节 粗节 棉结 毛羽H
1 0.684 8 0.656 0.696 7 0.528 29 0.567 4 0.503 0 0.609 5
2 0.733 8 0.914 8 0.800 1 0.780 0 0.808 7 0.513 0.744 0
3 0.498 9 0.720 8 0.966 2 0.975 3 0.905 6 0.410 7 0.736 7
4 0.973 1 0.841 0 0.362 4 0.380 0 0.395 5 1 0.661 9
62 0.568 2 0.624 2 0.517 3 0.471 7 0.490 4 0.481 2 0.522 0

Tab.5

Experimental factor level coding transformation"

序号 试验因素 水平
-1 0 1
1 锭子速度 12 448 13 106.5 13 765
2 后区牵伸倍数 1.16 1.19 1.23
3 细纱捻系数 337 354.5 372
4 前罗拉速度 115 154.5 194
5 钢领直径 35 38.5 42
6 钳口隔距 2 2.75 3.5
7 前罗拉隔距 17 18 19

Tab.6

Partial test scheme and results"

试验编号 因素 Q 碳排放量/kg
锭子速度 后区牵伸倍数 细纱捻系数 前罗拉速度 钢领直径 钳口隔距 前罗拉隔距
1 0 0 0 -1 1 1 0 0.406 6.536
2 0 1 0 0 1 0 1 0.409 6.415
3 0 1 1 0 0 -1 0 0.586 4.865
4 -1 -1 0 1 0 0 0 0.517 4.890
62 0 0 0 1 -1 1 0 0.399 3.840

Fig.3

Pareto optimal solution set"

Fig.4

Model fitting performance analysis. (a) Residual probability distribution of f1(x);(b) Residual probability distribution of f2(x)"

Tab.7

Significance analysis of regression equation"

模型 平方和 均方值 F检验值 P
f1(x) 0.54 0.015 15.56 <0.000 1
f2(x) 44.07 1.692 6 52.89 <0.000 1

Tab.8

Optimization results of process parameters"

参数组 锭子速度/(r·min-1) 后区牵伸倍数 捻系数 前罗拉速度/(r·min-1) 钢领直径/mm 钳口隔距/mm 前罗拉隔距/mm
传统参数 13 423 1.23 361 154 38 2.5 19
Pareto最优解1 12 782 1.17 366 194 35 3.5 18
Pareto最优解2 12 862 1.18 366 194 35 3.5 17

Tab.9

Ratio of evaluation indexes before and after optimization"

评价指标 初始值 Pareto最优解1 指标改善百分比/% Pareto最优解2 指标改善百分比/%
碳排放Ce/kg 4.42 4.10 7.24 4.23 4.3
条干CV值/% 13.87 13.56 2.24 13.48 2.81
断裂强度z2/(kN·tex-1) 23.1 23.75 2.81 23.69 2.55
细节z3/(个·km-1) 15 12 20 13 13.3
粗节z4/(个·km-1) 37 26 29.7 25 32.4
棉结z5/(个·km-1) 85 74 12.9 73 14.1
毛羽H 3.25 2.9 10.8 2.84 12.6
[1] 张友国. 碳达峰、碳中和工作面临的形势与开局思路[J]. 行政管理改革, 2021(3): 77-85.
ZHANG Youguo. The situation and opening ideas of carbon peaking and carbon neutral work[J]. Administrative Reform, 2021(3): 77-85.
[2] 杨思涵, 佟孟华, 刘睿婕, 等. 异质性工业企业碳减排状态与路径的比较[J]. 中国环境科学, 2019, 39(6): 2678-2688.
YANG Sihan, TONG Menghua, LIU Ruijie, et al. Comparison of carbon emission reduction status and pathways of heterogeneous industrial enterprises[J]. China Environmental Science, 2019, 39(6): 2678-2688.
[3] 李雪月, 徐文杰, 朱进忠, 等. 纯棉普梳纱碳足迹的计算方法[J]. 棉纺织技术, 2014, 42(9): 19-23.
LI Xueyue, XU Wenjie, ZHU Jinzhong, et al. Calculation method of carbon footprint of cotton plain carding yarn[J]. Cotton Textile Technology, 2014, 42(9): 19-23.
[4] 左丹, 杨维凯. 纺纱企业电耗分析与节能实践[J]. 棉纺织技术, 2017, 45(8): 32-37.
ZUO Dan, YANG Weikai. Power consumption analysis and energy saving practice of spinning enterprises[J]. Cotton Textile Technology, 2017, 45(8): 32-37.
[5] LIU Y, HUANG H, REN F, et al. Cradle-to-gate water and carbon footprint assessment of melange yarns manufacturing[J]. Procedia CIRP, 2020, 90:198-202.
doi: 10.1016/j.procir.2020.01.051
[6] TSAI W H. Green production planning and control for the textile industry by using mathematical programming and industry 4.0 techniques[J]. Energies, 2018, 11(8): 2072.
doi: 10.3390/en11082072
[7] OZTURK E, CINPERI N C, KITIS M. Improving energy efficiency using the most appropriate techniques in an integrated woolen textile facility[J]. Journal of Cleaner Production, 2020, 254:120145.
doi: 10.1016/j.jclepro.2020.120145
[8] SIM J, PRABHU V. The life cycle assessment of energy and carbon emissions on wool and nylon carpets in the United States[J]. Journal of Cleaner Production, 2018, 170:1231-1243.
doi: 10.1016/j.jclepro.2017.09.203
[9] DIYALEY S, CHAKRABORTY S . Teaching-learning-based optimization of ring and rotor spinning processes[J]. Soft Computing, 2021, 25(15): 10287-10307.
doi: 10.1007/s00500-021-05990-0
[10] 刘文珊, 吴雄英, 丁雪梅. 毛纱产品工业碳足迹的核算[J]. 毛纺科技, 2015, 43(2): 57-61.
LIU Wenshan, WU Xiongying, DING Xuemei. Accounting for the industrial carbon footprint of wool yarn products[J]. Wool Textile Journal, 2015, 43(2): 57-61.
[11] 王晓锋, 朱晨, 袁阴. 基于供应链的纺织行业节能减排决策[J]. 纺织学报, 2019, 40(1): 166-174.
WANG Xiaofeng, ZHU Chen, YUAN Yin. Supply chain-based decision making for energy saving and emission reduction in textile industry[J]. Journal of Textile Research, 2019, 40(1): 166-174.
[12] 顾燕, 薛元, 徐志武, 等. 三通道数码纺段彩纱的工艺参数优化[J]. 棉纺织技术, 2019, 47(1): 59-63.
GU Yan, XUE Yuan, XU Zhiwu, et al. Optimization of process parameters for three-channel digital spinning of segmental colored yarn[J]. Cotton Textile Technology, 2019, 47(1): 59-63.
[13] 王青, 王贯超. FA322B并条机牵伸机构主牵伸区部分参数的优化设计[J]. 纺织学报, 2017, 38(8): 139-143.
WANG Qing, WANG Guanchao. Optimal design of some parameters of the main drafting zone of FA322B drawing mechanism of the drawing machine[J]. Journal of Textile Research, 2017, 38(8): 139-143.
[14] 吴震宇, 陈小天, 石鹏飞, 等. 采用响应曲面法的纱线空气捻接参数优化[J]. 纺织学报, 2016, 37(1): 41-46.
WU Zhenyu, CHEN Xiaotian, SHI Pengfei, et al. Optimization of yarn air twist parameters using response surface method[J]. Journal of Textile Research, 2016, 37(1): 41-46.
[15] 纺织工业“十三五”发展规划[J]. 纺织科技进展, 2016(10): 2-4.
Textile industry "Thirteenth Five-Year Plan" development plan[J]. Textile Science and Technology Progress, 2016(10): 2-4.
[16] 章友鹤, 赵连英. 环锭细纱机的技术进步与创新[J]. 纺织导报, 2015(1): 52-57.
ZHANG Youhe, ZHAO Lianying. Technological progress and innovation of ring spinning machine[J]. China Textile Leader, 2015(1): 52-57.
[17] 祝庆利, 曲翠平. 赛络纺棉/氨纶包芯纱纱疵成因及其预防措施[J]. 毛纺科技, 2020, 48(9): 25-29.
ZHU Qingli, QU Cuiping. Causes of cotton/spandex corespun yarn defects and their preventive measures in cyclo-spinning[J]. Wool Textile Journal, 2020, 48(9): 25-29.
[18] 邵景峰, 马创涛, 王蕊超, 等. 基于碳排放核算的涤纶低弹丝生产工艺优化[J]. 纺织学报, 2019, 40(2): 166-172.
SHAO Jingfeng, MA Chuangtao, WANG Ruichao, et al. Optimization of production process of polyester low stretch yarn based on carbon emission accounting[J]. Journal of Textile Research, 2019, 40(2): 166-172.
[19] 辜小花, 邱奎, 李太福, 等. 基于大数据的高含硫天然气脱硫工艺优化[J]. 天然气工业, 2016, 36(9): 107-114.
GU Xiaohua, QIU Kui, LI Taifu, et al. Optimization of high-sulfur natural gas desulfurization process based on big data[J]. Natural Gas Industry, 2016, 36(9): 107-114.
[1] DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission [J]. Journal of Textile Research, 2022, 43(01): 36-42.
[2] JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121.
[3] WU Jiaqing, WANG Ying, HAO Xinmin, GONG Yumei, GUO Yafei. Effect of filament feeding positions on structure and properties of siro-spinning core-spun yarns [J]. Journal of Textile Research, 2021, 42(08): 64-70.
[4] GUO Minghua, LIU Xinjin. Investigation on distribution of fiber accelerated points in drafting zone of ring spinner based on cut-weighing method [J]. Journal of Textile Research, 2021, 42(08): 71-75.
[5] SHAO Jingfeng, LI Ning, CAI Zaisheng. Parameters optimization on polyester drawn textured yarn based on fuzzy multi-criteria [J]. Journal of Textile Research, 2021, 42(01): 46-52.
[6] ZHENG Xiaohu, BAO Jinsong, MA Qingwen, ZHOU Heng, ZHANG Liangshan. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm [J]. Journal of Textile Research, 2020, 41(06): 36-41.
[7] ZHANG Huanhuan, ZHAO Yan, JING Junfeng, LI Pengfei. Yarn evenness measurement based on sub-pixel edge detection [J]. Journal of Textile Research, 2020, 41(05): 45-49.
[8] MO Shuai, FENG Zhanyong, TANG Wenjie, DANG Heyu, ZOU Zhenxing. Performance optimization of elastic spindle pipe based on neural network and genetic algorithm [J]. Journal of Textile Research, 2020, 41(04): 161-166.
[9] ZHANG Xujing, WANG Lichuan, CHEN Yan. Optimization of apparel material distribution route based on carbon emission [J]. Journal of Textile Research, 2020, 41(03): 143-147.
[10] MENG Shuo, PAN Ruru, GAO Weidong, WANG Jing'an, ZHOU Lijun. Research on weaving scheduling using main objective evolutionary genetic algorithm [J]. Journal of Textile Research, 2019, 40(08): 169-174.
[11] SHAO Jingfeng, MA Chuangtao, WANG Ruichao, YUAN Yulou, WANG Xiyao, NIU Yifan. Polyester drawn textured yarn production process optimization based on carbon emission accounting [J]. Journal of Textile Research, 2019, 40(02): 166-172.
[12] LIN Huiting, AKANKWASA Nicholus Tayari, ZHANG Yuze, SHI Qianqian, WANG Jun. Effect of bypass channel on rotor-spun yarn properties in rotor spinning [J]. Journal of Textile Research, 2019, 40(02): 153-158.
[13] ZHA Liugen, XIE Chunping. Prediction of cotton yarn quality based on four-layer BP neural network [J]. Journal of Textile Research, 2019, 40(01): 52-56.
[14] . Simulation of fluid flow in rotor composite spinning unit and analysis on yarn quality [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 26-30.
[15] . Double S curves soft drafting technology [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 34-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[9] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[10] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .