Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 112-118.doi: 10.13475/j.fzxb.20210805808

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Photocatalytic synergistic efficiency of viscose fabric loaded with nitrogen carbon quantum dots/titanium dioxide

FENG Yan1,2,3, LI Liang1,2,4, LIU Shuping1,2,3, LI Shujing1,2,3, LIU Rangtong1,2,3()   

  1. 1. Henan Provincial Collaborative Innovation Center of Textile and Clothing, Zhengzhou, Henan 450007, China
    2. Henan Provincial Key Laboratory of Functional Textile Materials, Zhengzhou, Henan 450007, China
    3. College of Fashion Technology, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    4. Textile College, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
  • Received:2021-08-13 Revised:2022-06-29 Online:2022-10-15 Published:2022-10-28
  • Contact: LIU Rangtong E-mail:ranton@126.com

Abstract:

In order to improve the self-cleaning performance of clothing fabrics under sunlight, nitrogen-doped carbon quantum dots (N-CQDs) were prepared from citric acid and urea, and the composite photocatalytic textiles were created through hydrothermal treatment of viscose fabrics loaded with nitrogen-doped carbon quantum dots and nano titanium dioxide. The viscose fabrics were characterized by means of scanning electron microscope, infrared spectrometer, and ultraviolet-visible photometer, and heir optical absorption, photocatalytic degradation and stability were tested. The synergistic mechanism of degradation of Rhodamine B (RhB) by N-CQDs, TiO2 and their composite systems were studied. The results show that the decolorization rate of fabric loaded with N-CQDs/TiO2 is 76.5%, which is 49.1% higher than that of fabric loaded with TiO2, and the decolorization rate can still reach 62.34% after 6 cycles of photocatalytic degradation of RhB.

Key words: viscose fabric, nitrogen doped carbon quantum dots, titanium dioxide, solar photocatalytic degradation, synergistic mechanism

CLC Number: 

  • TS195.5

Fig.1

TEM image(a) and particle size distribution(b) of N-CQDs"

Fig.2

Macro photographs and SEM images of viscose fabrics. (a) Original sample(×10 000); (b) Fabrics loaded with TiO2(×15 000); (c) Fabrics loaded with N-CQDs(×150 000); (d) Fabrics loaded with N-CQDs/TiO2(×15 000)"

Fig.3

FT-IR spectra of N-CQDs powder and different samples. (a) N-CQDs powder; (b) Viscose fabric before and after finished"

Fig.4

XPS spectra of viscose fabric loaded with N-CQDs/TiO2. (a) Survey spectrum; (b) High-resolution N1s spectrum; (c) High-resolution C1s spectrum; (d) High-resolution O1s spectrum; (e) High-resolution Ti2p spectrum;(f) High-resolution Ti2p spectrum compared with different samples"

Fig.5

UV-Vis diffuse reflectance spectra of samples. (a) N-CQDs powder,TiO2 powder and different samples; (b) Samples loaded with different dopant levels of N-CQDs"

Fig.6

Relationship between decolorization rate and time of RhB degraded by photocatalysis of viscose fabrics. (a) Viscose fabrics before and after finished; (b) Samples loaded with N-CQDs/TiO2。"

Fig.7

Relationship between decolorization rate and cycle times of RhB degraded by repeated photocatalysis of samples loaded with N-CQDs/TiO2 or TiO2"

Fig.8

Schematic diagram of photocatalytic degradation of RhB by N-CQDs/TiO2"

[1] PELEYEJU M G, VILJOEN E L. WO3-based catalysts for photocatalytic and photoelectro-catalytic removal of organic pollutants from water: a review[J]. Journal of Water Process Engineering, 2021. DOI: 10.1016/J.JWPE.2021.101930.
doi: 10.1016/J.JWPE.2021.101930
[2] El-SHEIKH M A, HADIBARATA T, YUNIARTO A, et al. Role of nanocatalyst in the treatment of organochlorine compounds: a review[J]. Chemosphere, 2020. DOI: 10.1016/j.chemosphere.2020.128873.
doi: 10.1016/j.chemosphere.2020.128873
[3] XU M X, WANG Y H, GENG J F, et al. Photo-decomposition of NOx on Ag/TiO2 composite catalysts in a gas phase reactor[J]. Chemical Engineering Journal, 2017, 307:181-188.
doi: 10.1016/j.cej.2016.08.080
[4] ZHOU S L, WNAG F, SUBRAMANIAN B. Facile fabrication of hybrid PA6-decorated TiO2 fabrics with excellent photocatalytic, anti-bacterial, UV light-shielding, and super hydrophobic properties[J]. RSC Advances, 2017, 7(83): 52375-52381.
doi: 10.1039/C7RA09613E
[5] 蒋文雯, 莫慧琳, 樊婷玥, 等. Ag6Si2O7/TiO2复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(4):107-113.
JIANG Wenwen, MO Huilin, FAN Tingyue, et al. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue[J]. Journal of Textile Research, 2021, 42(4): 107-113.
[6] KIREESAN S, ANDREW M, JOHN L Z, et al. Photocatalysis of estrone in water and wastewater: comparison between Au-TiO2 nanocomposite and TiO2, and degradation by-products[J]. Science of the Total Environment, 2018, 610/611:521-530.
doi: 10.1016/j.scitotenv.2017.08.097
[7] JAIN N, RAVISHANKAR N, MADRAS G. Spectroscopic and kinetic insights of Pt-dispersion over microwave-synthesized GO-supported Pt-TiO2 for CO oxidation[J]. Molecular Catalysis, 2017, 432:88-98.
doi: 10.1016/j.mcat.2017.01.014
[8] WANG K, WANG X Z, PAN H, et al. In situ fabrication of CDs/g-C3N4 hybrids with enhanced interface connection via calcination of the precursors for photocatalytic H2 evolution[J]. International Journal of Hydrogen Energy, 2018, 43(1): 91-99.
doi: 10.1016/j.ijhydene.2017.11.003
[9] 汤晓蕾, 董延茂, 袁妍, 等. 染料敏化TiO2光催化剂的研究进展[J]. 工业水处理, 2021, 41(10):8-13.
TANG Xiaolei, DONG Yanmao, YUAN Yan, et al. Research of dye-sensitized technology on TiO2 photocatalyst[J]. Industrial Water Treatment, 2021, 41(10):8-13.
[10] 周园园, 郑煜铭, 吴小琼, 等. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, et al. Research progress of performance enhancement methods for electrospun nanofiber-based photo-catalyst[J]. Journal of Textile Research, 2021, 42(11):179-186.
[11] 王春来, 李钒, 杨焜, 等. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32(19):3348-3357.
WANG Chunlai, LI Fan, YANG Kun, et al. Materials research progress on carbon quantum dots-titanium dioxide composite photocatalysts[J]. Materials Review, 2018, 32(19):3348-3357.
[12] 杨玉寒, 杨小芹, 庞军国, 等. 泡沫材料负载TiO2光催化剂的研究进展[J]. 化工新型材料, 2021, 49(11):294-299.
YANG Yuhan, YANG Xiaoqin, PANG Junguo, et al. Research progress of TiO2 photocatalyst supported on foam materials[J]. New Chemical Materials, 2021, 49(11): 294-299.
[13] 徐丽亚, 周梦莹, 张峰, 等. 二氧化钛光催化剂固载化研究进展[J]. 工业催化, 2021, 29(1):16-22.
XU Liya, ZHOU Mengying, ZHANG Feng, et al. A research progress on immobilization of titanium dioxide photocatalyst[J]. Industrial Catalysis, 2021, 29(1):16-22.
[14] 陈文豆, 张辉, 陈天宇, 等. 二氧化钛水热改性涤/棉混纺织物的自清洁性能[J]. 纺织学报, 2020, 41(7): 122-128, 134.
CHEN Wendou, ZHANG Hui, CHEN Tianyu, et al. Self-cleaning properties of titanium dioxide modified polyester/cotton blend fabrics[J]. Journal of Textile Research, 2020, 41(7):122-128, 134.
[15] 田震. 碳点及其复合材料的制备与应用研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019:40.
TIAN Zhen. Synthesis and applications of carbon dots and their composites[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optical Precision Machinery and Physics, Chinese Academy of Sciences), 2019:40.
[16] 孙正琪, 郭晓玲, 魏俊伟, 等. 棉织物负载硫氮共掺杂TiO2光催化的抗菌整理[J]. 棉纺织技术, 2020, 48(8): 30-34.
SUN Zhengqi, GUO Xiaoling, WEI Junwei, et al. Antibacterial finishing of cotton fabric carrying S-N Co-doped TiO2 visible light photocatalysis[J]. Cotton Textile Technology, 2020, 48(8):30-34.
[17] 普艳平. 氮掺杂石墨烯量子点的微波法合成及荧光传感分析应用[D]. 郑州: 郑州大学, 2017:57.
PU Yanping. The synthesis of nitrogen-doped graphene quantum dots by microwave method and its application in fluorescence sensing analysis[D]. Zhengzhou: Zhengzhou University, 2017:57.
[18] 吴冰钊, 黄红琴, 蒋彩英, 等. 碳量子点在八面双锥和纳米片TiO2上的光催化[J]. 无机化学学报, 2020, 36(3): 443-450.
WU Bingzhao, HUANG Hongqin, JIANG Caiying, et al. Photo catalytic performance of octahedral bipyramids titanium oxide/carbon quantum dots and nanosheet titanium oxide/carbon quantum dots[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(3): 443-450.
[19] 周进. 基于碳量子点半导体复合材料的制备和光催化性能研究[D]. 武汉: 武汉科技大学, 2020:44.
ZHOU Jin. The preparation and photocatalytic properties of carbon quantum dots-based semiconductor compo-sites[D]. Wuhan: Wuhan University of Science and Technology, 2020:44.
[20] 李慧慧, 王群, 苏骑, 等. 花状TiO2/氟硅烷构筑超双疏棉织物及其光催化性能[J]. 印染, 2022, 48(2):17-23.
LI Huihui, WANG Qun, SU Qi, et al. Construction of superamphiphobic cotton fabric with flower-like TiO2/fluorosilane and its photocatalytic properties[J]. China Dyeing & Finishing, 2022, 48(2):17-23.
[21] 庞飞. 基于纳米结构的光催化材料体系的研究[D]. 上海: 华东师范大学, 2017:18-20.
PANG Fei. Study of photocatalytic materials based on nanostructures[D]. Shanghai: East China Normal University, 2017:18-20.
[22] YU H J, ZHAO Y F, ZHOU C, et al. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2014, 2 (10):3259-3678.
doi: 10.1039/c4ta90019g
[1] ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45.
[2] HE Xuemei, MAO Haiyan, CAI Lu. Adsorption performance of chitosan based hybrid aerogel on reactive dyes [J]. Journal of Textile Research, 2021, 42(02): 148-155.
[3] CHEN Wendou, ZHANG Hui, CHEN Tianyu, WU Hailiang. Self-cleaning properties of titanium dioxide modified polyester/cotton blend fabrics [J]. Journal of Textile Research, 2020, 41(07): 122-128.
[4] LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao, LIU Xueting. Modification of activated carbon fiber using graphene oxide doped titanium dioxide [J]. Journal of Textile Research, 2020, 41(01): 8-14.
[5] ZHANG Mengyuan, HUANG Qinglin, HUANG Yan, XIAO Changfa. Electrospun poly(tetrafluoroethylene)/TiO2 photocatalytic nanofiber membrane and its application [J]. Journal of Textile Research, 2019, 40(09): 1-7.
[6] . Preparation and performance of self-cleaning fabrics based on Ag/TiO2 photocatalysis [J]. Journal of Textile Research, 2018, 39(12): 89-94.
[7] . Preparation and photocatalytic properties of  polyester fabric loaded with titanium dioxide [J]. Journal of Textile Research, 2018, 39(11): 91-95.
[8] . Photocatalytic degradetion kinetics optimization of acid red 37 by response surface method and transformation mechanism thereof [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 81-88.
[9] . Preparation and visible light photocatalytic property of visible light-induced polyacrylonitrile nanofibers mat [J]. Journal of Textile Research, 2015, 36(02): 13-18.
[10] . Thermal insulation properties of agricultural covering nonwovens [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(5): 67-0.
[11] JI Tao, LI Jie, GAO Qiang, YU Jin, LIU Qi-Xia. Preparation and process optimization of viscose-based carbonized fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(4): 49-54.
[12] Yan Wang;FU Ya-Qin. Preparation of TiO2 porous film supported on carbon fiber and its photocatalytic performances [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(4): 23-28.
[13] Yaofeng Zhu;Yanjie Ding;FU Ya-Qin. Preparation and performances of photocatalysed titanium dioxide thin film deposited on polyacrylonitile based carbon fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(4): 1-6.
[14] WEI Xia;GU Zhenya;WU Lei. Application of nanotechnology on fabrics with lotus surfaces [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(6): 32-35,4.
[15] JIN Xudong;FU Yaqin;NI Qingqing. Effect of surface oxidation of carbon fibers on its TiO_2 support [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(12): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!