Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 9-15.doi: 10.13475/j.fzxb.20210806207

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of modified poly(lactide-co-glycolide) nano-scaled drug delivery system by collagen

WU Huanling1(), XIE Zhouliang1, WANG Yang1, SUN Wanchao1, KANG Zhengfang2, XU Guohua3   

  1. 1. College of Textile & Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
    2. Yancheng Quanhang Technology Co., Ltd., Yancheng, Jiangsu 224056, China
    3. Yancheng Chuangneng New Shielding Material Co., Ltd., Yancheng, Jiangsu 224043, China
  • Received:2021-08-16 Revised:2022-05-22 Online:2022-11-15 Published:2022-12-26
  • Contact: WU Huanling E-mail:wuhuanlingok@126.com

Abstract:

In order to improve the slow degradation rate of poly(lactic acid-glycolic acid copolymer) (PLGA) and improve the drug release performances of PLGA-based drug loading materials, collagen (Col) as the modified material and doxorubicin (DOX) as the drug model, PLGA/Col/DOX nanofibrous membranes were prepared by electrostatic spinning technology with PLGA as the substrate, which can be used as sustained-release material for local tumor treatment. Modification effect of collagen on the hydrophilicity-hydrophobicity, in-vitro degradation, drug release performance and cytocompatibility of PLGA-based drug delivery system was investigated. The results showed that the properties of PLGA/Col nanofibrous membranes with a mass ratio of 75/25 were the best. After modification by collagen, the contact angle of the nanofibrous membrane decreased from 93.5°to 51.5°, indicating significant improvement of hydrophilicity. In-vitro degradation experiments showed that the 30-day weight loss rates of the nanofibers before and after collagen modification were 3.5% and 19% respectively, suggesting that the addition of collagen could greatly improve the degradation of PLGA. In-vitro drug release experiments showed that the drug release rate was significantly increased after modification, which could effectively improve the defects of low drug release rate and low drug release amount of PLGA. Cytotoxicity experiments showed that collagen could improve the biocompatibility of PLGA and facilitate cell adhesion and proliferation.

Key words: electrospinning, poly(lactide-co-glycolide), collagen protein, drug delivery system, degradability

CLC Number: 

  • TQ342.87

Tab.1

Composition of spinning solution"

样品名称 DOX体积/mL Col体积/mL PLGA体积/ mL
PLGA 0 0 10.0
PLGA/Col 0 2.5 7.5
PLGA/DOX 1 0 10.0
PLGA/Col/DOX 1 2.5 7.5

Fig.1

SEM images of different nanofibrous membranes"

Tab.2

Mechanical properties of different nanofibrous membranes"

样品名称 拉伸强度/MPa 断裂伸长率/% 弹性模量/MPa
PLGA 5.22 44.7 180.3
PLGA/Col 5.02 63.6 133.4
PLGA/Col/DOX 3.91 46.5 114.6

Fig.2

Water contact angle images of different nanofibrous membranes"

Fig.3

FT-IR spectra of different materials"

Fig.4

Thermogravimetric curves of different nanofiber membranes"

Fig.5

Weight loss rate of PLGA and PLGA/Col nanofiber membranes after 30 d of degradation"

Fig.6

Drug release curve of PLGA/DOX and PLGA/Col/DOX nanofiber membranes"

Fig.7

Adhesion and proliferation of L929 cells on different nanofiber membranes"

[1] 魏志勇, 刘炼, 张萌, 等. 聚乳酸,乳酸乙醇酸共聚物的制备及其体外降解[J]. 生物医学工程学杂志, 2008, 25(1) : 122-126.
pmid: 18435272
WEI Zhiyong, LIU Lian, ZHANG Meng, et al. Preparation and in-vitro degradation of polylactide and poly(L-lactide-co-glycolide)[J]. Journal of Biomedical Engineering, 2008, 25(1) : 122-126.
pmid: 18435272
[2] 王菲, 周洪, 王小鹏, 等. 对生物可吸收聚乙丙交酯体外降解特性和强度维持的研究[J]. 口腔医学, 2008, 28(10) : 540-542.
WANG Fei, ZHOU Hong, WANG Xiaopeng, et al. Study on in vitro degradation characteristics and strength maintenance of bioabsorbable poly (ethylene lactide)[J]. Stomatology, 2008, 28(10) : 540-542.
[3] CHAUDHURI O, COOPER-WHITE J, JANMEY P A, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020, 584: 535-546.
doi: 10.1038/s41586-020-2612-2
[4] VISAVELIYA N R, KHLER J M. Emerging structural and interfacial features of particulate polymers at the nanoscale[J]. Langmuir, 2020, 36(44): 13125-13143.
doi: 10.1021/acs.langmuir.0c02566 pmid: 33112618
[5] OGANOV A R, PICKARD C J, ZHU Q, et al. Structure prediction drives materials discovery[J]. Nature Reviews Materials, 2019, 4: 331-348.
doi: 10.1038/s41578-019-0101-8
[6] NIIYAMA E, UTO K, EBARA M, et al. Electrospun PCL-PCL polyblend nanofibers with high-and low-molecular weight for controlled degradation[J]. Chemistry Letters, 2019, 48(7) : 623-626.
doi: 10.1246/cl.190100
[7] HU J, SONG Y, ZHANG C, et al. Highly aligned electrospun collagen/PCL surgical sutures with sustained release of growth factors for wound regeneration[J]. ACS Applied Bio Materials, 2020, 3(2) : 965-976.
doi: 10.1021/acsabm.9b01000
[8] ZHAO X, LIU L, WANG J, et al. In vitro vascularization of a combined system based on a 3D printing technique[J]. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10(10) : 833-842.
doi: 10.1002/term.1863 pmid: 24399638
[9] KWAN P H, WONIL J, KANG G B, et al. Collagen/poly(D, L-lactic-co-glycolic acid) composite fibrous scaffold prepared by independent nozzle control multi-electrospinning apparatus for dura repair[J]. Journal of Industrial and Engineering Chemistry, 2018(66) : 430-437.
[10] KWAK S, HAIDER A, GUPTA K C, et al. Micro/nano multilayered scaffolds of PLGA and collagen by alternately electrospinning for bone tissue engi-neering[J]. Nanoscale Research Letters, 2016(11) : 323-338.
[11] 乔小银. 生物3D打印的载药支架用于乳腺癌治疗的研究[D]. 长沙: 湖南大学, 2020: 1-4.
QIAO Xiaoyin. 3D printed drug-loaded stent for the treatment of breast cancer[D]. Changsha: Hunan University, 2002: 1-4.
[12] CHEN M, LIN S, WANG H S. Fabrication of DOX and CPT dual-drug loaded PLGA nanofibrous mats for cancer treatment[J]. Journal of Controlled Release, 2015. DOI:10.1016/j.jconrel.2015.05.126.
doi: 10.1016/j.jconrel.2015.05.126
[13] WANG J, HELDER L, SHAO J, et al. Encapsulation and release of doxycycline from electrospray-generated PLGA microspheres: effect of polymer end groups[J]. International Journal of Pharmaceutics, 2019, 564: 1-9.
doi: S0378-5173(19)30285-6 pmid: 30978487
[14] 王利君, 熊杰, 骆菁菁, 等. 聚乳酸-聚己内酯/丝素蛋白三元复合纳米纤维膜支架的结构与性能[J]. 纺织学报, 2017, 38(5) : 8-13.
WANG Lijun, XIONG Jie, LUO Jingjing, et al. Structure and properties of polylactic acid-polycaprolactone/silk fibroin composite nanofibrous scaffolds[J]. Journal of Textile Research, 2017, 38(5) : 8-13.
[15] FANG R, ZHANG E, XU L, et al. Electrospun PCL-PLA/HA based nanofibers as scaffold for osteoblast-like cells[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(11) : 7747-7751.
doi: 10.1166/jnn.2010.2831
[16] 吴焕岭, 孙万超, 王乃涛, 等. 一种PLGA纳米载药纤维膜及其制备方法: 202210020816.5[P]. 2022-05-13.
WU Huanling, SUN Wanchao, WANG Naitao, et al. The invention relates to the preparation method of a PLGA-based drug loading nanofibrous membrane: 202210020816.5[P]. 2022-05-13.
[17] 朱㻉瑶, 赵振国. 界面化学基础[M]. 北京: 化学工业出版社, 1996: 219-220.
ZHU Buyao, ZHAO Zhenguo. Interfacial chemistry basis[M]. Beijing: Chemical Industry Press, 1996: 219-220.
[18] 陈静涛, 赵玉萍, 徐政, 等. 重组胶原蛋白与牛源Ⅰ型胶原蛋白红外光谱研究[J]. 材料导报, 2008, 22(3) : 119-121.
CHEN Jingtao, ZHAO Yuping, XU Zheng, et al. FT-IR spectrometric study of reconbinant collagen and borine tendon[J]. Materials Reports, 2008, 22(3): 119-121.
[19] 吴焕岭. 基于聚丙烯腈的差异化多功能长丝纤维的探究[J]. 丝绸, 2021, 58(3) : 25-29.
WU Huangling. Research on a differentiated and multifunctional filament based on polyacrylonitrile[J]. Journal of Silk, 2021, 58(3) : 25-29.
[20] HANKKARAINEN M, ALBERTSSON A C, KARLSSON S. Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo-and copolymers of PLA and PGA[J]. Polymer Degradation & Stability, 1996, 52(3) : 283-291.
[21] BURKERSRODA F V, SCHEDL L, GPFERICH A. Why degradable polymers undergo surface erosion or bulk erosion[J]. Biomaterials, 2002, 23(21) : 4221-4231.
doi: 10.1016/s0142-9612(02)00170-9 pmid: 12194525
[22] HOFMANN D, ENTRIALGO-CASTANO M, KRATZ K, et al. Knowledge-based approach towards hydrolytic degradation of polymer-based biomaterials[J]. Advanced Materials, 2009, 21 : 1-9.
[1] WANG Shudong. Structure and mechanical properties of three-dimensional porous biodegradable polymer artificial esophageal scaffold [J]. Journal of Textile Research, 2022, 43(12): 16-21.
[2] ZHANG Changhuan, LI Xianxian, ZHANG Liran, LI Deyang, LI Nianwu, WU Hongyan. Preparation and performance of lithium iron phosphate/carbon black/carbon nanofibers flexible cathode [J]. Journal of Textile Research, 2022, 43(11): 16-21.
[3] YU Yangxiao, LI Feng, WANG Yuyu, WANG Shanlong, WANG Jiannan, XU Jianmei. Preparation and properties of polypyrole/silk fibroin conductive nanofiber membranes [J]. Journal of Textile Research, 2022, 43(10): 16-23.
[4] YANG Jizhen, LIU Qiangfei, HE Ruidong, WU Shaohua, HE Hongwei, NING Xin, ZHOU Rong, DONG Xianglin, QI Guishan. Research progress in high efficiency and low resistance air filter materials [J]. Journal of Textile Research, 2022, 43(10): 209-215.
[5] HU Chengye, ZHOU Xinru, FAN Mengjing, HONG Jianhan, LIU Yongkun, HAN Xiao, ZHAO Xiaoman. Preparation and properties of skin-core structure micro/nano fiber composite yarns [J]. Journal of Textile Research, 2022, 43(09): 95-100.
[6] LI Weiping, YANG Guixia, CHENG Zhiqiang, ZHAO Chunli. Preparation and properties of polyvinylpyrrolidone/aloe composite nanofiber membrane [J]. Journal of Textile Research, 2022, 43(08): 55-59.
[7] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[8] OU Kangkang, QI Linya, HOU Yijun, FAN Tianhua, QI Kun, WANG Baoxiu, WANG Huaping. Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings [J]. Journal of Textile Research, 2022, 43(06): 49-56.
[9] LI Qin, LI Xingxing, XIE Fangfang, ZHOU Wenlong, CHEN Kaiyi, LIU Yuqing. Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods [J]. Journal of Textile Research, 2022, 43(05): 178-184.
[10] CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69.
[11] CHEN Mingjun, LI Haoyi, YANG Weimin. Physical model and effects of electric field on jets in polymer melt differential electrospinning [J]. Journal of Textile Research, 2022, 43(05): 70-76.
[12] SUN Zheru, ZHANG Qingle, HAO Lincong, CHENG Lu, XIA Xin. Preparation and performance of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry structure [J]. Journal of Textile Research, 2022, 43(04): 40-46.
[13] JIN Xu, LIU Fang, DU Xuan, HUA Chao, GONG Xuzhong, ZHANG Xiuqin, WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation [J]. Journal of Textile Research, 2022, 43(03): 201-209.
[14] ZHANG Yu, LIU Laijun, LI Chaojing, JIN Qiaoqiao, XIE Qianyang, LI Peilun, WANG Fujun, WANG Lu. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability [J]. Journal of Textile Research, 2022, 43(03): 24-30.
[15] ZHANG Aiqin, HAO Jiacheng, WANG Zhi, WANG Yongchao, LIU Shuqiang, DONG Hailiang, JIA Husheng, XU Bingshe. Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers [J]. Journal of Textile Research, 2022, 43(03): 50-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .