Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 16-21.doi: 10.13475/j.fzxb.20210807406

• Fiber Materials • Previous Articles     Next Articles

Preparation and performance of lithium iron phosphate/carbon black/carbon nanofibers flexible cathode

ZHANG Changhuan1, LI Xianxian1, ZHANG Liran1, LI Deyang1, LI Nianwu2, WU Hongyan1()   

  1. 1. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2021-08-19 Revised:2022-06-22 Online:2022-11-15 Published:2022-12-26
  • Contact: WU Hongyan E-mail:hongye419@126.com

Abstract:

In order to achieve flexibility of the electrode material for flexible lithium-ion batteries, a self-supporting lithium iron phosphate/carbon black/carbon nanofibers (LiFePO4/CB/CNFs) flexible cathode was developed by a combination of electrospinning and heat treatment. The results show that the olivine structure LiFePO4 is formed after heat treatment. The prepared flexible LiFePO4/CB/CNFs cathode is a three-dimensional network structure nanomaterial with a high porosity. The CB and active material LiFePO4 are uniformly embedded in the CNF matrix. The CB did not affect the LiFePO4 crystal structure during the formation of the active material. When the CB mass ratios are set to 0.10% and 0.15%, flexible composite cathode demonstrates good electrochemical reversibility, the first discharge specific capacity is 141.1 and 139.1 mA·h/g, respectively, and the coulombic efficiency is 87.3% and 87.6% for first cycle, respectively. The discharge specific capacity performance is relatively stable during 100 cycles, and the coulombic efficiency is maintained at about 99% from 2 to 100 cycle.

Key words: electrospinning, flexible cathode, lithium iron phosphate, carbon black, carbon nanofiber

CLC Number: 

  • TM910

Fig.1

SEM images of electrospun LiFePO4 precursor/CB/PAN nanofiber composite film with different mass ratio of CB before and after heat treatment. (a)Before heat treatment; (b)After pro-oxidation; (c)After carbonization"

Fig.2

Photos of LiFePO4/carbon black/CNFs before (a) and after (b) bending"

Fig.3

XRD spectra of LiFePO4/CB/CNFs flexible cathode with different mass ratio of CB"

Fig.4

TEM (a) and HRTEM (b) images of LiFePO4/CB/CNFs flexible cathode"

Fig.5

EIS of half cells assembled with LiFePO4/CB/CNFs flexible cathode"

Fig.6

CV curve of half cells assembled with LiFePO4/CB/CNFs flexible cathode"

Fig.7

Electrochemical performance curve of half cells assembled with LiFePO4/CB/CNFs flexible cathode with different weight of CB. (a) Initial charge and discharge; (b) Cycle performance"

[1] ZHU Y H, YANG X Y, LIU T, et al. Flexible 1D batteries: recent progress and prospects[J]. Advanced Materials, 2020. DOI:10.1002/adma.201901961.
doi: 10.1002/adma.201901961
[2] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
doi: 10.7536/PC200528
ZHANG Changhuan, LI Nianwu, ZHANG Xiuqin. Electrode materials for flexible lithium-ion battery[J]. Progress in Chemistry, 2021, 33(4): 633-648.
doi: 10.7536/PC200528
[3] ZHU Y J, YANG M, HUANG Q Y, et al. V2O5 textile cathodes with high capacity and stability for flexible lithium-ion batteries[J]. Advanced Materials, 2020. DOI:10.1002/adma.201906205.
doi: 10.1002/adma.201906205
[4] OKUBO M, HOSONO E, KIM J, et al. Nano-size effect on high-rate Li-ion intercalation in LiCoO2electrode[J]. Journal of the American Chemical Society, 2007, 129(23): 7444-7452.
doi: 10.1021/ja0681927
[5] KO H S, KIM J H, WANG J, et al. Co/Ti co-substituted layered LiNiO2 prepared using a concentration gradient method as an effective cathode material for Li-ion batteries[J]. Journal of Power Sources, 2017, 372(31): 107-115.
doi: 10.1016/j.jpowsour.2017.10.021
[6] WANG J, ZHANG Q, LI X, et al. A graphite functional layer covering the surface of LiMn2O4 electrode to improve its electrochemical performance[J]. Electrochemistry Communications, 2013, 36: 6-9.
doi: 10.1016/j.elecom.2013.08.025
[7] XIA H, RAGAVENDRAN K R, XIE J, et al. Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries[J]. Journal of Power Sources, 2012, 212: 28-34.
doi: 10.1016/j.jpowsour.2012.03.079
[8] 陈超. 石墨烯包覆及离子掺杂协同改性LiFePO4正极材料[D]. 桂林: 桂林理工大学, 2021: 3-8.
CHEN Chao. Synergistically modified LiFePO4 cathode material by graphene coating and ion doping[D]. Guilin: Guilin University of Technology, 2021: 3-8.
[9] KIRSCH D J, LACEY S D, KUANG Y D, et al. Scalable dry processing of binder-free lithium-ion battery electrodes enabled by holey graphene[J]. ACS Applied Energy Materials, 2019, 2(5): 2990-2997.
doi: 10.1021/acsaem.9b00066
[10] HA S H, SHIN K H, PARK H W, et al. Flexible lithium-ion batteries with high areal capacity enabled by smart conductive textiles[J]. Small, 2018. DOI:10.1002/smll.201703418.
doi: 10.1002/smll.201703418
[11] BAO Y H, HONG G Q, CHEN Y, et al. Customized kirigami electrodes for flexible and deformable lithium-ion batteries[J]. ACS Applied Material & Interfaces, 2020, 12(1): 780-788.
[12] WANG Y B, CHEN C J, XIE H. 3D-printed all-fiber Li-ion battery toward wearable energy storage[J]. Advanced Functional Materials, 2017. DOI:10.1002/adfm.201703140.
doi: 10.1002/adfm.201703140
[13] 康卫民, 范兰兰, 邓南平, 等. 静电纺丝多孔碳纳米纤维制备与应用研究进展[J]. 纺织学报, 2017, 38(11): 168-176.
KANG Weimin, FAN Lanlan, DEGN Nanping, et al. Research progress in preparation and application of electrospinning porous carbon nanofibers[J]. Journal of Textile Research, 2017, 38(11): 168-176.
[14] 阳智, 刘呈坤, 吴红, 等. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(7): 54-61.
YANG Zhi, LIU Chengkun, WU Hong, et al. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers[J]. Journal of Textile Research, 2021, 42(7): 54-61.
[15] TOPRAKCI O, JI L W, LIN Z, et al. Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196: 7692-7699.
doi: 10.1016/j.jpowsour.2011.04.031
[16] CHEN Q Q, QIAO X C, PENG C, et al. Electrochemical performance of electrospun LiFePO4/C submicrofibers composite cathode material for lithium ion batteries[J]. Electrochimica Acta, 2012, 78: 40-48.
doi: 10.1016/j.electacta.2012.05.143
[17] ZHANG C H, LIANG Y Z, YAO L, et al. Effect of thermal treatment on the properties of electrospun LiFePO4-carbon nanofiber composite cathode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2015, 627: 91-100.
doi: 10.1016/j.jallcom.2014.12.067
[18] ZHANG C H, YAO L, QIU Y P. Synthesis and characterization of LiFePO4-carbon nanofiber-carbon nanotube composites as the cathode material for lithium-ion batteries prepared by electrospinning and thermal treatment[J]. Journal of Applied Polymer Science, 2016. DOI: 10.1002/app.43001.
doi: 10.1002/app.43001
[19] 张学虎. 炭黑及生物质基硬碳复合材料的制备及储锂/钠性能应用[D]. 鞍山: 辽宁科技大学, 2021: 10.
ZHANG Xuehu. Preparation of carbon black and biomass-based hard carbon composites and application of lithium/sodium storage performance[D]. Anshan: University of Science and Technology Liaoning, 2021: 10.
[20] 陈远强. 聚吡咯/炭黑复合材料制备及其在铅酸电池中的应用[J]. 工程塑料应用, 2021, 49(8):1-7.
CHEN Yuanqiang. Preparation of polypyrrole/carbon black composites and their applications in lead-acid batteries[J]. Engineering Plastics Application, 2021, 49(8):1-7.
[21] 张长欢. 基于静电纺丝法的锂离子电池正极用 LiFePO4-CNF复合材料的结构设计、制备及其性能研究[D]. 上海: 东华大学, 2015: 48, 50-51.
ZHANG Changhuan. Design, preparation, and properties of LiFePO4-carbon nanofiber composite materials for lithium ion batteries cathode based on the electrospinning method[D]. Shanghai: Donghua University, 2015: 48, 50-51.
[22] JANG D H, SHIN Y J, OH S M. Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 coils[J]. Journal of the Electrochemical Society, 1996, 143: 2204-2211.
doi: 10.1149/1.1836981
[1] WU Huanling, XIE Zhouliang, WANG Yang, SUN Wanchao, KANG Zhengfang, XU Guohua. Preparation and properties of modified poly(lactide-co-glycolide) nano-scaled drug delivery system by collagen [J]. Journal of Textile Research, 2022, 43(11): 9-15.
[2] YU Yangxiao, LI Feng, WANG Yuyu, WANG Shanlong, WANG Jiannan, XU Jianmei. Preparation and properties of polypyrole/silk fibroin conductive nanofiber membranes [J]. Journal of Textile Research, 2022, 43(10): 16-23.
[3] YANG Jizhen, LIU Qiangfei, HE Ruidong, WU Shaohua, HE Hongwei, NING Xin, ZHOU Rong, DONG Xianglin, QI Guishan. Research progress in high efficiency and low resistance air filter materials [J]. Journal of Textile Research, 2022, 43(10): 209-215.
[4] HU Chengye, ZHOU Xinru, FAN Mengjing, HONG Jianhan, LIU Yongkun, HAN Xiao, ZHAO Xiaoman. Preparation and properties of skin-core structure micro/nano fiber composite yarns [J]. Journal of Textile Research, 2022, 43(09): 95-100.
[5] LI Weiping, YANG Guixia, CHENG Zhiqiang, ZHAO Chunli. Preparation and properties of polyvinylpyrrolidone/aloe composite nanofiber membrane [J]. Journal of Textile Research, 2022, 43(08): 55-59.
[6] QU Yun, MA Wei, LIU Ying, REN Xuehong. Antibacterial fiber membrane with photodegradation function based on polyhydroxybutyrate/polycaprolactone [J]. Journal of Textile Research, 2022, 43(06): 29-36.
[7] OU Kangkang, QI Linya, HOU Yijun, FAN Tianhua, QI Kun, WANG Baoxiu, WANG Huaping. Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings [J]. Journal of Textile Research, 2022, 43(06): 49-56.
[8] LI Qin, LI Xingxing, XIE Fangfang, ZHOU Wenlong, CHEN Kaiyi, LIU Yuqing. Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods [J]. Journal of Textile Research, 2022, 43(05): 178-184.
[9] CHEN Feng, JI Zhongli, YU Wenhan, DONG Wuqiang, WANG Qianlin, WANG Deguo. Influence of nanofiber membrane wettability on gas-liquid filtration performance of sandwiched composite filters [J]. Journal of Textile Research, 2022, 43(05): 63-69.
[10] CHEN Mingjun, LI Haoyi, YANG Weimin. Physical model and effects of electric field on jets in polymer melt differential electrospinning [J]. Journal of Textile Research, 2022, 43(05): 70-76.
[11] YANG Ke, YAN Jun, XIAO Yong, XU Jing, CHEN Lei, LIU Yong. Preparation of MnOx/carbon nanofiber membrane free-standing cathodes for zinc ion battery based on electrochemical deposition and their electrochemical characteristics [J]. Journal of Textile Research, 2022, 43(05): 77-85.
[12] SUN Zheru, ZHANG Qingle, HAO Lincong, CHENG Lu, XIA Xin. Preparation and performance of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry structure [J]. Journal of Textile Research, 2022, 43(04): 40-46.
[13] JIN Xu, LIU Fang, DU Xuan, HUA Chao, GONG Xuzhong, ZHANG Xiuqin, WANG Bin. Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation [J]. Journal of Textile Research, 2022, 43(03): 201-209.
[14] ZHANG Yu, LIU Laijun, LI Chaojing, JIN Qiaoqiao, XIE Qianyang, LI Peilun, WANG Fujun, WANG Lu. Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability [J]. Journal of Textile Research, 2022, 43(03): 24-30.
[15] ZHANG Aiqin, HAO Jiacheng, WANG Zhi, WANG Yongchao, LIU Shuqiang, DONG Hailiang, JIA Husheng, XU Bingshe. Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers [J]. Journal of Textile Research, 2022, 43(03): 50-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .