Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 53-57.doi: 10.13475/j.fzxb.20210807605

• Textile Engineering • Previous Articles     Next Articles

New measurement method for fabric multi-directional bending performance

LIU Chengxia1,2,3(), ZHANG Yaqi2   

  1. 1. Zhejiang Province Engineering Laboratory of Clothing Digital Technology, Zhejiang Sci-Tech University, Hangzhou,Zhejiang 310018, China
    2. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou,Zhejiang 310018, China
    3. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology,Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-08-19 Revised:2022-06-28 Online:2022-10-15 Published:2022-10-28

Abstract:

Under the widely used testing method for fabric bending performance, only one result for one direction can be obtained by using one fabric. To investigate a testing method that can characterize fabric multi-directional bending performance simultaneously, 20 common fabrics were chosen and tested with the conventional method to obtain the bending length in the directions of 0°、90°、45°和135° by cutting the fabric sample into stripes along these four directions for testing. Correlation analysis was conducted between projection length and projection area with bending length. It was concluded that both the projection length and projection area have good correlation with bending length of the conventional method, with the coefficient about 0.95, which proves the new method can be used to characterize the bending properties of 0°、90°、45° and 135°. Two reading can be obtained in each direction, and therefore, it is more efficient and accurate than the conventional method. Besides, it can visualize fabric anisotropy in bending performance and display the testing stability of bending in one direction.

Key words: fabric, measurement for multi-directional bending performance, projection length, projection area, bending length

CLC Number: 

  • TS941.2

Tab.1

Fabric specification parameters"

织物
编号
组织 成分
(含量)
密度/(根·(10 cm)-1) 面密度/
(g·m-2)
厚度/
mm
经向 纬向
1# 平纹 580 290 128 0.16
2# 平纹 涤纶 560 320 109 0.22
3# 平纹 羊毛 420 380 101 0.18
4# 缎纹 涤纶 560 440 176 0.27
5# 平纹 亚麻/棉
(50/50)
480 460 125 0.19
6# 平纹 粘胶 260 240 121 0.16
7# 斜纹 380 270 182 0.34
8# 平纹 600 500 104 0.11
9# 斜纹 粘胶 230 130 166 0.37
10# 斜纹 510 290 218 0.39
11# 斜纹 涤纶/棉
(50/50)
460 290 142 0.26
12# 缎纹 羊毛/涤纶
(65/35)
450 280 118 0.18
13# 斜纹 羊毛/棉
(65/35)
600 330 116 0.19
14# 缎纹 蚕丝/粘胶
(50/50)
510 440 96 0.16
15# 斜纹 涤纶 420 390 136 0.26
16# 斜纹 亚麻/涤纶
(65/35)
240 110 168 0.38
17# 斜纹 羊毛 270 220 132 0.24
18# 平纹 羊毛/粘胶
(70/30)
470 260 92 0.22
19# 平纹 棉/粘胶
(80/20)
640 270 124 0.18
20# 缎纹 涤纶 560 370 92 0.15

Fig.1

Shape of fabric sample"

Fig.2

Testing instrument"

Fig.3

Morphology of sagging fabric sample before(a) and after (b) pre-processing"

Tab.2

Testing results of fabric bending properties"

试样
编号
投影面积/cm2 投影长度/cm 弯曲长度/mm
90° 45° 135° 90° 45° 135° 90° 45° 135°
1# 2.91 1.29 2.35 1.59 2.63 1.17 2.15 1.52 23.47 16.57 20.60 18.57
2# 3.37 1.76 2.91 2.08 2.89 1.54 2.56 1.77 26.80 19.23 25.23 22.40
3# 2.08 1.23 1.75 1.25 1.93 1.11 1.62 1.13 18.07 16.63 17.40 15.50
4# 2.41 2.46 1.44 2.42 2.17 2.29 1.32 2.14 20.13 22.03 19.50 21.60
5# 3.52 1.46 2.55 1.96 3.17 1.37 2.47 1.75 26.77 17.90 21.97 18.67
6# 2.32 1.22 1.01 1.38 2.07 1.10 0.89 1.35 21.73 18.03 15.47 18.63
7# 2.87 1.08 2.06 1.39 3.06 1.06 2.13 1.29 28.80 17.87 22.70 19.53
8# 2.21 1.28 1.40 1.25 2.02 1.16 1.42 1.13 20.87 15.67 17.77 16.43
9 1.66 0.96 1.20 0.97 1.52 0.87 1.09 0.84 18.20 15.20 16.97 15.90
10# 2.99 3.01 2.64 2.49 2.30 2.94 2.50 2.22 23.77 24.63 24.50 25.23
11# 1.74 0.82 0.79 0.98 1.68 0.78 0.81 0.95 18.23 14.53 13.80 15.53
12# 1.94 0.96 1.64 1.13 1.78 0.90 1.51 0.99 18.77 16.10 18.53 15.07
13# 1.38 0.72 0.78 0.92 1.22 0.67 0.68 0.84 18.77 13.90 15.00 17.10
14# 2.14 1.20 1.47 1.26 1.96 1.09 1.41 1.15 20.00 16.67 19.07 17.03
15# 2.73 0.92 1.02 1.05 2.49 0.75 0.88 0.87 22.43 14.03 16.37 14.83
16# 3.43 1.46 2.78 2.47 3.05 1.45 2.72 2.38 27.83 20.23 25.43 21.40
17# 1.57 2.67 2.10 1.41 1.42 2.38 1.93 1.23 17.97 24.60 20.90 18.00
18# 3.86 0.61 0.82 1.09 3.54 0.49 0.60 0.94 31.10 12.13 13.73 17.07
19# 2.01 2.50 1.17 1.14 1.78 2.25 1.01 0.98 19.90 20.57 16.47 17.50
20# 2.61 1.52 1.36 1.27 2.32 1.33 1.25 1.12 20.03 20.50 18.93 17.73

Tab.3

Results of fabrics bending performance"

丝缕角度/
(°)
投影长度相关性 投影面积相关性
90° 45° 135° 90° 45° 135°
0 0.972** 0.026 0.483* 0.538* 0.917** 0.035 0.474* 0.494*
90 0.113 0.995** 0.435 0.568** 0.107 0.931** 0.509* 0.656**
45 0.442 0.487* 0.991** 0.755** 0.430 0.564** 0.954** 0.677**
135 0.440 0.656** 0.756** 0.991** 0.416 0.668** 0.803** 0.892**

Fig.4

Relationship between projection length and bending length"

Fig.5

Relationship between projection area and bending length"

Fig.6

Projection shape of different fabrics"

[1] 倪红, 潘永惠. 基于BP神经网络的织物斜向弯曲性能的预测[J]. 纺织学报, 2009, 30(2):48-51.
NI Hong, PAN Yonghui. Prediction of fabric diagonal bending rigidity by BP neural network[J]. Journal of Textile Research, 2009, 30(2):48-51.
[2] 石风俊, 胡金莲. 织物的弯曲性能[J]. 纺织学报, 2005, 26(3):15-18.
SHI Fengjun, HU Jinlian. Bending behavior of fabric[J]. Journal of Textile Research, 2005, 26(3):15-18.
[3] PEIRCE F T. The handle of cloth as a measurable quantity[J]. Journal of The Textile Institute, 1930, 21:377-416.
[4] GROSBER P. The mechanical properties of woven fabrics:partⅡ:the bending of woven fabrics[J]. Textile Research Journal, 1966, 36(3):205-211.
doi: 10.1177/004051756603600301
[5] GROSBERG P, SWANI M. The mechanical properties of woven fabrics:part Ⅲ: the bucking of woven fabrics[J]. Textile Research Journal, 1966, 36(4):332- 338.
doi: 10.1177/004051756603600405
[6] 余芳, 刘成霞. 用蝴蝶结法测试毛织物弯曲性[J]. 纺织学报, 2019, 40(8):35-39,47.
YU Fang, LIU Chengxia. Measurement for bending behavior of wool fabric by bowknot method[J]. Journal of Textile Research, 2019, 40(8):35-39,47.
doi: 10.1177/004051757004000106
[7] STRAZDIENE E, MARTISIUE G, GUTUASKAS M, et al. Textile hand: a new method for textile objective evaluation[J]. Textile Research Journal, 2003, 94(1): 245-255.
[8] 刘成霞, 韩永华, 张才前. 基于图像处理的织物弯曲性能测试方法[J]. 纺织学报, 2013, 34(7):53-57.
LIU Chengxia, HAN Yonghua, ZHANG Caiqian. Study on the measurement of multi-directional fabric stiffness[J]. Journal of Textile Research, 2013, 34(7):53- 57.
[9] 刘成霞, 周澳. 利用十字交叉法测试织物弯曲悬垂性[J]. 纺织学报, 2018, 39(6):42-46.
LIU Chengxia, ZHOU Ao. Test method for fabric bending behavior based on image processing[J]. Journal of Textile Research, 2018, 39(6): 42-46.
[10] SUN M N. A new tester and method for measuring fabric stiffness and drape[J]. Textile Research Journal, 2008, 78(9):761-770.
doi: 10.1177/0040517507084284
[1] FENG Yan, LI Liang, LIU Shuping, LI Shujing, LIU Rangtong. Photocatalytic synergistic efficiency of viscose fabric loaded with nitrogen carbon quantum dots/titanium dioxide [J]. Journal of Textile Research, 2022, 43(10): 112-118.
[2] ZHANG Diandian, YU Mengnan, LI Min, LIU Mingming, FU Shaohai. Preparation and antifouling properties of super-slip cotton fabric based on polymer microspheres grafted with silicone oil [J]. Journal of Textile Research, 2022, 43(10): 119-125.
[3] WANG Yue, WANG Chunhong, XU Lei, LIU Shengkai, LU Chao, WANG Lijian, YANG Lu, ZUO Qi. Development of environmentally friendly knitted fabrics with 3-D moisture conductive structure and performance evaluation on moisture absorption and quick-drying [J]. Journal of Textile Research, 2022, 43(10): 58-64.
[4] LI Mufang, CHEN Jiaxin, ZENG Fanjia, WANG Dong. Preparation and performance of spacer fabric-based photothermal-thermoelectric composites [J]. Journal of Textile Research, 2022, 43(10): 65-70.
[5] CHEN Junxian, LI Weiping, FU Qixuan, FENG Xinxing, ZHANG Hua. Preparation and properties of aramid/flame retardant viscose/flame retardant polyamide blended fabrics [J]. Journal of Textile Research, 2022, 43(09): 107-114.
[6] CHENG Yanting, MENG Jiaguang, XUE Tao, ZHI Chao. Preparation of 3D printed weft plain knitted fabric [J]. Journal of Textile Research, 2022, 43(09): 115-119.
[7] CHENG Lüzhu, WANG Zongqian, SHENG Hongmei, ZHONG Hui, XIA Liping. Comparison of test methods for permethrin content in polyamide fabrics [J]. Journal of Textile Research, 2022, 43(09): 143-148.
[8] LI Ningning, ZHANG Zhaohua, XU Suhong, ZHENG Ziyi, LI Xiaoyu. Distribution characteristics of local skin moisture sensitivity of human in thermal environment [J]. Journal of Textile Research, 2022, 43(09): 182-187.
[9] YUAN Jie, LOU Lin, WANG Qicai. Research progress of brain perception technology for fabric tactile comfort [J]. Journal of Textile Research, 2022, 43(09): 211-217.
[10] GAO Xiaofei, QI Lizhe, SUN Yunquan. Design of shape-following manipulator for three-dimensional sewing of flexible fabrics [J]. Journal of Textile Research, 2022, 43(09): 27-33.
[11] XIONG Tanping, TAN Fei, HUANG Cheng, YAN Kelu, ZOU Ni, WANG Zheng, YE Jingping, JI Bolin. Antimicrobial properties of chloramine-grafted polyester/polyamide microfiber knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 101-106.
[12] YANG Honglin, XIANG Wei, DONG Shuxiu. Preparation and electromagnetic shielding properties of polyester fabric based nano-copper/reduced graphene oxide composites [J]. Journal of Textile Research, 2022, 43(08): 107-112.
[13] WANG Chenlu, MA Jinxing, YANG Yaqing, HAN Xiao, HONG Jianhan, ZHAN Haihua, YANG Shiqian, YAO Shaofang, LIU Jiangqiaona. Strain sensing property and respiration monitoring of polyaniline-coated warp-knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 113-118.
[14] DENG Zhongmin, HU Haodong, YU Dongyang, WANG Wen, KE Wei. Density detection method of weft knitted fabrics making use of combined image frequency domain and spatial domain [J]. Journal of Textile Research, 2022, 43(08): 67-73.
[15] ZHANG Xiaocheng, ZHOU Yan, TIAN Weiguo, QIAO Xin, JIA Fengwei, XU Lili, ZHANG Jinming, ZHANG Jun. Rapid separation and content determination of fibers from waste cotton/polyester blended fabrics [J]. Journal of Textile Research, 2022, 43(07): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!