Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 107-114.doi: 10.13475/j.fzxb.20210809408

• Textile Engineering • Previous Articles     Next Articles

Preparation and properties of aramid/flame retardant viscose/flame retardant polyamide blended fabrics

CHEN Junxian, LI Weiping, FU Qixuan, FENG Xinxing, ZHANG Hua()   

  1. Systems Engineering Institute, Academy of Military Sciences, Beijing 100010, China
  • Received:2021-08-24 Revised:2021-11-10 Online:2022-09-15 Published:2022-09-26
  • Contact: ZHANG Hua E-mail:zh_ioqet@163.com

Abstract:

In order to obtain fabrics with long-term flame retardancy, which are strong, wear-resistant and with satisfactory wearability, aramid 1414, flame retardant viscose and flame retardant polyamide were blended for producing woven flame retardant fabrics. The influence of fiber blend ratio, strand twist, fabric structure and adhesive types on the mechanical properties, flame retardancy and color fastness of the fabric was discussed. The results show that the aramid 1414/flame retardant viscose/flame retardant polyamide blend ratio 30/45/25 leads to optimal mechanical properties and flame retardancy. Compared with the fabric using aramid/flame retardant viscose blended yarn, the 3-component yarn demonstrates a 56% increase in breaking strength, 58% increase in abrasion resistance. The mechanical properties of the yarn are improved as the twist level increases and peak at 680 twist/m, but decrease with further increase of yarn twist. The flame retardancy and mechanical properties of the fabric with twill weave are better than that of fabrics with plain weave and satin weave. By using non-ionic acrylate copolymer G-BD as binder in printing paste, the color fastness grade of the high-strength, wear-resistant and flame retardant fabric can be kept above grade 2 after washing for 20 times.

Key words: aramid, flame retardant viscose, flame retardant polyamide, blended fabric, flame retardancy, wearability, functional textiles

CLC Number: 

  • TS155.6

Tab.1

Fiber basic properties"

纤维
材料编号
断裂强度/
(cN·dtex-1)
断裂伸长
率/%
回潮率/% 极限氧
指数/%
M 19.8 10.0 7.0 34
FR 2.5 11.8 13.0 30
ST 4.6 42.8 3.5 30

Tab.2

Chemical composition of adhesives"

黏合剂型号 类型 化学组成
JJS 阴离子型 丙烯酸酯共聚物
301A 阴离子型 丙烯酸酯共聚物
PBC 阴离子型 丙烯酸酯共聚物
FHN 阴离子型 丁二烯丙烯腈共聚物
G-BD 非离子型 丙烯酸酯共聚物
GW 非离子型 丙烯酸酯共聚物
PNP 非离子型 丙烯酸酯共聚物

Tab.3

Blending ratio of yarn"

样品编号 M比例/% FR比例/% ST比例/%
1 25 65 15
2 25 55 20
3 25 50 25
4 25 45 30
5 25 40 35
6 15 60 25
7 20 55 25
8 30 45 25
9 35 40 25
10 30 70
11 40 60
12 50 50
13 60 40
14 70 30

Tab.4

Formulation of printing paste"

成分 用量(占色浆总量)/%
黏合剂 15.0
涂料 0.8
还原染料 1.2
糊料 34.0
去离子水 49.0

Fig.1

Breaking strength and LOI value of yarns with different blending proportions. (a) M/FR/ST blending yarns(M blending proportion is 25%); (b) M/FR/ST blending yarns(ST blending proportion is 25%); (c) M/FR blending yarns with different blending proportions"

Fig.2

Wear-resisting numbers of yarns with different blending proportions. (a) M/FR/ST blending yarns; (b) M/FR blending yarns"

Fig.3

Breaking strength of different twist yarns"

Tab.5

Mechanical properties and flame retardancy of fabrics A made of yarns with different twists"

纱线捻度/
(捻·m-1)
密度/(根·(10 cm)-1) 断裂强力/N 撕破强力/N 续燃时间/s 阴燃时间/s 经向损毁
长度/mm
经向 纬向 经向 纬向 经向 纬向
580 250 198 1 263 1 118 113 104 0 0 55
630 250 200 1 359 1 159 110 100 0 0 46
680 248 198 1 466 1 200 106 97 0 0 35
730 250 198 1 439 1 185 93 92 0 0 31
780 250 198 1 392 1 149 87 91 0 0 25

Tab.6

Mechanical properties and flame retardancy of fabrics B made of yarns with different twists"

纱线捻度/
(捻·m-1)
密度/(根·(10 cm)-1) 断裂强力/N 撕破强力/N 续燃时间/s 阴燃时间/s 经向损毁
长度/mm
经向 纬向 经向 纬向 经向 纬向
580 332 238 2 002 1 295 135 105 0 0 29
630 330 238 2 096 1 456 133 102 0 0 30
680 330 238 2 171 1 560 129 96 0 0 30
730 330 238 2 128 1 492 125 92 0 0 30
780 330 238 2 073 1 455 123 86 0 0 29

Fig.4

Mechanical properties(a) and flame retardancy (b) of fabrics A with different fabric structures"

Fig.5

Mechanical properties(a)and flame retardancy (b) of fabrics B with different fabric structures"

Fig.6

Effect of adhesives on flame retardancy (a) and color fastness grade after washing (b) of fabrics A"

[1] 姚培建. 阻燃纤维及阻燃纺织品发展趋势[J]. 中国个体防护装备, 2006(2): 41-44.
YAO Peijian. Development trend of flame retardant fiber and flame retardant textile[J]. China Personal Protective Equipment, 2006(2): 41-44.
[2] 王建平. 家用纺织品的阻燃安全性法规要求及发展趋势[J]. 纺织导报, 2013(8): 23-25.
WANG Jianping. Fire safety regulations for home textiles[J]. China Textile Leader, 2013(8): 23-25.
[3] 宗小燕, 贺江平. 纺织品的阻燃综述[J]. 染整技术, 2006, 28(10): 15-17.
ZONG Xiaoyan, HE Jiangping. Review of flame retardancy of textiles[J]. Textile Dyeing and Finishing Journal, 2006, 28(10): 15-17.
[4] 曹令, 周永凯. 纺织品阻燃整理技术的应用与进展[J]. 中国个体防护装备, 2007(3): 24-28.
CAO Ling, ZHOU Yongkai. Application and development of flame retardant finishing technology for textiles[J]. China Personal Protective Equipment, 2007(3): 24-28.
[5] 赵雪, 展义臻, 何瑾馨. 涤纶无卤阻燃研究进展[J]. 染整技术, 2008, 30(12): 12-16.
ZHAO Xue, ZHAN Yizhen, HE Jinxin. Research progress on halogen-free flame retardant of polyester[J]. Textile Dyeing and Finishing Journal, 2008, 30(12): 12-16.
[6] 董秋兰, 陈国华, 李建府, 等. 尼龙-6纤维织物的阻燃研究进展[J]. 化工进展, 2009, 28(6): 982-985.
DONG Qiulan, CHEN Guohua, LI Jianfu, et al. Review in flame retardant of nylon-6 textiles[J]. Chemical Industry and Engineering Progress, 2009, 28(6): 982-985.
[7] 王鲁英, 嘎力巴, 刘姝, 等. 阻燃涤纶织物的现状及发展[J]. 合成纤维, 2011, 40(10): 6-10.
WANG Luying, GA Liba, LIU Shu, et al. Status and development of flame retardant polyester fabric[J]. Synthetic Fiber in China, 2011, 40(10): 6-10.
[8] 瞿中凯, 郭永林, 李卫华. 含磷永久性阻燃涤纶的生产和应用[J]. 广西化纤通讯, 2000(1): 9-12.
QU Zhongkai, GUO Yonglin, LI Weihua. Production and application of permanent flame retardant polyester containing phosphorus[J]. Guangxi Chemical Fiber Newsletter, 2000(1): 9-12.
[9] 蔡铁锦. 共聚阻燃聚酰胺及其复合材料的制备与性能表征[D]. 苏州: 苏州大学, 2019: 5.
CAI Tiejin. Preparation and characterization of copolymer flame retardant polyamide and its composites[D]. Suzhou: Soochow University, 2019: 5.
[10] 孔志群, 殷庆永. 芳砜纶纤维在阻燃家纺产品中的应用[J]. 现代纺织技术, 2014, 22(3): 62-64.
KONG Zhiqun, YIN Qingyong. Application of polysulphonamide in flame/retardant home textiles[J]. Advanced Textile Technology, 2014, 22(3): 62-64.
[11] 丁见收, 刘厚洋. 阻燃纤维芳纶1313性能及应用[J]. 现代职业安全, 2017(3): 20-21.
DING Jianshou, LIU Houyang. Properties and application of aramid 1313[J]. Modern Occupational Safety, 2017(3): 20-21.
[12] 常承飞. 聚丙烯腈基阻燃纤维的研究[D]. 上海: 东华大学, 2017: 2.
CHANG Chengfei. Study on PAN-based flame retardant fiber[D]. Shanghai: Donghua University, 2017: 2.
[13] 赵书林, 杜红丽. 芳纶/阻燃粘胶混纺比对织物阻燃性能的影响[J]. 纺织学报, 2006, 27(12): 74-76.
ZHAO Shulin, DU Hongli. Influence of blending ratio of Nomex/Lenzing Viscose FR on flame-retardant property of the fabric[J]. Journal of Textile Research, 2006, 27(12): 74-76.
[14] 刘维, 许德生. 织物组织密度对芳纶/阻燃粘胶混纺针织物阻燃性能的影响[J]. 纺织科技进展, 2007(1): 37-38.
LIU Wei, XU Desheng. Effect of the weave construction and density of the Nomex/viscose FR knitting on their flame-retardant characteristics[J]. Progress in Textile Science & Technology, 2007(1): 37-38.
[15] 李小叶, 赵俐. 芳纶、芳砜纶与阻燃黏胶混纺织物阻燃性能研究[J]. 针织工业, 2011(10): 14-15.
LI Xiaoye, ZHAO Li. Study on flame-retardant properties of blended fabrics of aramid, sulfonamide and flame retardant adhesive[J]. Knitting Industries, 2011(10): 14-15.
[16] 全凤玉, 纪全, 夏延致, 等. 阻燃粘胶纤维的研究及其进展[J]. 纺织学报, 2004, 25(1): 121-123.
QUAN Fengyu, JI Quan, XIA Yanzhi, et al. Research and development of flame retardant viscose fiber[J]. Journal of Textile Research, 2004, 25(1): 121-123.
[17] 范丽君, 周岚, 冯新星, 等. 芳纶1414/阻燃粘胶混纺织物的阻燃及耐热性研究[J]. 现代纺织技术, 2018, 26 (1): 65-69.
FAN Lijun, ZHOU Lan, FENG Xinxing, et al. Study on the flame retardancy of aramid 1414/flame retardant viscose blended fabric[J]. Advanced Textile Technology, 2018, 26 (1): 65-69.
[18] 邵秋娟, 孙卫国. 芳纶/维纶/粘胶混纺比对织物力学与阻燃性能的影响[J]. 纺织科技进展, 2007(5): 58-59.
SHAO Qiujuan, SUN Weiguo. Influence of different blended ratio on the mechanics and flame-retardant performance of the armaid/vinylon/viscose fabric[J]. Progress in Textile Science & Technology, 2007(5): 58-59.
[19] 赵秀媛. 功能性粘胶纤维的开发及应用[J]. 纺织导报, 2009(11): 74-76.
ZHAO Xiuyuan. Development and application of functional viscose fiber[J]. China Textile Leader, 2009(11): 74-76.
[20] 蒋顶军, 丁守万. 国内外阻燃尼龙研究开发现状[J]. 工程塑料应用, 2000(10): 48-50.
JIANG Dingjun, DING Shouwan. The researching and developing state of the flame-retardant nylon at home and abroad[J]. Engineering Plastics Application, 2000(10): 48-50.
[21] 于广慧, 肖婷婷, 辛运龙. 阻燃锦纶66纤维FRY-27的研制和性能研究[J]. 染整技术, 2020, 42(6): 28-29.
YU Guanghui, XIAO Tingting, XIN Yunlong. Preparation and properties of flame retardant nylon 66 fiber FRY-27[J]. Textile Dyeing and Finishing Journal, 2020, 42(6): 28-29.
[22] 祝陈晨, 范硕, 李发学. 共聚型阻燃抗熔滴尼龙6的制备及表征[J]. 东华大学学报(自然科学版), 2020, 46(6): 868-873.
ZHU Chenchen, FAN Shuo, LI Faxue. Preparation and characterization of copolymerized flame-retardant nylon 6 with anti-dripping performance[J]. Journal of Donghua University(Natural Science), 2020, 46(6): 868-873.
[23] 王悦音, 马猛, 王卫明, 等. 无卤阻燃长玻纤增强尼龙66的制备及性能表征[J]. 塑料, 2017, 46(4): 47-49.
WANG Yueyin, MA Meng, WANG Weiming, et al. Preparation and characterization of halogen-free flame retardant long-glass fiber reinforced nylon 66[J]. Plastics, 2017, 46(4): 47-49.
[24] 瞿英俊. 无卤阻燃玻纤增强尼龙6的性能研究[D]. 杭州: 浙江工业大学, 2009: 8.
QU Yingjun. Study on properties of halogen-free flame retardant glass fiber reinforced polyamide 6[D]. Hangzhou: Zhejiang University of Techonology, 2009: 8.
[25] 于伟东, 储才元. 纺织物理[M]. 2版. 上海: 东华大学出版社, 2009: 231.
YU Weidong, CHU Caiyuan. Textile physics[M]. 2nd ed. Shanghai: Donghua University Press, 2009: 231.
[26] 陈晓渊, 鄢友娟, 张萍. 羊毛/芳纶/阻燃粘胶/PTT/导电纤维功能阻燃面料的生产实践[J]. 毛纺科技, 2015, 43(3): 10-13.
CHEN Xiaoyuan, YAN Youjuan, ZHANG Ping. Production practice of blended multifunctional flame-retardant fabrics with wool/aramid/retardant viscose/PTT/conductive fibers[J]. Wool Textile Journal, 2015, 43(3): 10-13.
[27] 邵小群, 徐家龙, 余进, 等. 芳纶1414赛络纱的纺制及临界捻系数分析[J]. 棉纺织技术, 2012, 40(5): 12-14.
SHAO Xiaoqun, XU Jialong, YU Jin, et al. Spinning of aramid 1414 fiber and critical twist factor analyses[J]. Cotton Textile Technology, 2012, 40(5): 12-14.
[1] YANG Huiyu, ZHOU Jingyi, DUAN Zijian, XU Weilin, DENG Bo, LIU Xin. Research progress in textile surface multifunctional modification by atomic layer deposition [J]. Journal of Textile Research, 2022, 43(09): 195-202.
[2] XIONG Tanping, TAN Fei, HUANG Cheng, YAN Kelu, ZOU Ni, WANG Zheng, YE Jingping, JI Bolin. Antimicrobial properties of chloramine-grafted polyester/polyamide microfiber knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 101-106.
[3] ZHANG Xiaocheng, ZHOU Yan, TIAN Weiguo, QIAO Xin, JIA Fengwei, XU Lili, ZHANG Jinming, ZHANG Jun. Rapid separation and content determination of fibers from waste cotton/polyester blended fabrics [J]. Journal of Textile Research, 2022, 43(07): 1-8.
[4] XIONG Yonghui, WANG Dong, DU Changsen, FU Shaohai. Preparation of aqueous dispersion system of bisneopentyl glycol dithiopyrophosphate and its application in flame-retardant viscose fiber [J]. Journal of Textile Research, 2022, 43(07): 22-28.
[5] ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96.
[6] LI Na, WANG Xiao, LI Zhenbao, LI Qian, DU Bing. Preparation and properties of photografted flame-retardant cotton fabrics with modified adenine nucleotide [J]. Journal of Textile Research, 2022, 43(07): 97-103.
[7] NAN Qingqing, ZENG Qinghong, YUAN Jingxuan, WANG Xiaoqin, ZHENG Zhaozhu, LI Gang. Advances on antibacterial textiles [J]. Journal of Textile Research, 2022, 43(06): 197-205.
[8] HUANG Yiting, CHENG Xianwei, GUAN Jinping, CHEN Guoqiang. Phosphorus/nitrogen-containing flame retardant for flame retardant finishing of polyester/cotton blended fabric [J]. Journal of Textile Research, 2022, 43(06): 94-99.
[9] MA Ying, LIU Yueyan, ZHAO Yang, CHEN Xiang, LU Sheng, HU Hanjie. Mechanical property analysis of yarn pull-out from aramid plain woven fabrics based on micro-geometry [J]. Journal of Textile Research, 2022, 43(04): 47-54.
[10] ZHOU Tianbo, ZHENG Huanda, CAI Tao, YU Zuojun, WANG Licheng, ZHENG Laijiu. One-bath dyeing of polyester/cotton blended fabrics in supercritical CO2 with Reactive Disperse Yellow dye [J]. Journal of Textile Research, 2022, 43(03): 116-122.
[11] XIE Kaifang, LUO Fengxiang, BAO Xinjun, ZHOU Hengshu, XU Guangbiao. Preparation and performance of composite coated polyester harness cord with high wearability [J]. Journal of Textile Research, 2022, 43(03): 123-131.
[12] LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy [J]. Journal of Textile Research, 2022, 43(01): 1-8.
[13] DONG Shuang, KONG Yuying, GUAN Jinping, CHENG Xianwei, CHEN Guoqiang. Chemical separation and recycling of waste polyester/cotton blended military training uniforms [J]. Journal of Textile Research, 2022, 43(01): 178-185.
[14] JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121.
[15] CHEN Xian, LI Mengmeng, ZHAO Xin, DONG Jie, TENG Cuiqing. Preparation and microstructure control of aerogel fibers based on aramid nanofibers [J]. Journal of Textile Research, 2021, 42(11): 17-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!