Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 169-175.doi: 10.13475/j.fzxb.20210809907

• Machinery & Accessories • Previous Articles     Next Articles

Influence of different nozzle structures and parameters on nozzle performance of foreign fiber sorters

SUN Jian1,2(), JIANG Boyi1,2, ZHANG Shoujing1,2, HU Sheng1,2   

  1. 1. School of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710048, China
  • Received:2021-08-02 Revised:2022-03-15 Online:2022-10-15 Published:2022-10-28

Abstract:

In order to investigate the influence of different nozzle structures and parameters on the nozzle performance of the foreign fiber sorters, nozzles with the upper flaring, lower flaring, conic and rectangular structures and parameters were analyzed by three dimensional fluid simulations. The mass flow rate at the nozzle inlet, the velocity at the 40 mm section in the external air flow field and the velocity attenuation curves at the inner and outer nozzles were obtained under the 0.6 MPa inlet pressure. The results show that the performance of the nozzle can be improved by the three nozzle structures mentioned above except the rectangular nozzle, and the performance of the upper flaring nozzle is the best, of which the average velocity and maximum velocity are 33.4% and 12.9%, respectively, higher than that of the original nozzle. Compared with the original nozzle, the average velocity of the lower flaring nozzle is increased by 11.6%, and the inlet mass flow rate decreased by 0.17%. The overall velocity distribution of the conical nozzle is better than that of the upper flaring nozzle, but with big increase of inlet mass flow rate.

Key words: foreign fiber sorter, nozzle structure, nozzle performance, numerical simulation, mass flow rate

CLC Number: 

  • TS112.7

Fig.1

Original nozzle model. (a) 3-D model of nozzle;(b) Nozzle size diagram"

Fig.2

Schematic diagram of optimized nozzle. (a) Nozzle of upper flaring nozzle;(b) Nozzle of lower flaring nozzle;(c) Nozzle of conical nozzle"

Fig.3

Schematic diagram of boundary conditions"

Fig.4

Position and velocity cloud map of 40 mm section of external air flow field"

Tab.1

Section velocity and inlet mass flow rate of upper flaring nozzle"

H1/mm A/mm V1/(m·s-1) V2/(m·s-1) Q/(g·s-1)
3.6 194.3 326.4 9.778
0.3 4.0 216.0 322.4 9.583
4.4 215.3 322.2 9.435
3.6 220.2 330.5 9.998
0.5 4.0 220.3 331.9 9.859
4.4 218.9 329.3 9.704
3.6 221.4 332.4 10.065
0.7 4.0 216.9 324.5 9.576
4.4 220.5 332.9 9.905
3.6 232.4 338.4 10.053
1.0 4.0 223.2 339.3 10.145
4.4 236.1 348.9 10.103

Fig.5

Velocity curve of upper flaring nozzle when H1=1.0 mm. (a) Velocity distribution curve at center line position of section;(b) Velocity attenuation curve of inner nozzle; (c) Velocity attenuation curve of outer nozzle"

Tab.2

Section velocity and inlet mass flow rate of lower flaring nozzle"

H2/mm B/mm V1/(m·s-1) V2/(m·s-1) Q/(g·s-1)
3.6 193.4 294.7 9.120
0.3 4.0 189.9 300.2 9.118
4.4 183.5 300.8 9.120
3.6 194.1 292.6 9.119
0.5 4.0 189.4 299.0 9.128
4.4 183.1 299.2 9.121
3.6 195.5 295.4 9.118
0.7 4.0 184.6 297.1 9.121
4.4 182.9 298.5 9.119
3.6 197.5 298.9 9.116
1.0 4.0 185.0 285.5 9.117
4.4 181.0 295.4 9.120

Fig.6

Velocity curve of lower flaring nozzle when H2=1.0 mm. (a) Velocity distribution curve at center line position of section;(b) Velocity attenuation curve of inner nozzle;(c) Velocity attenuation curve of outer nozzle"

Tab.3

Section velocity and inlet mass flow rate of conical nozzle"

C/mm V1/(m·s-1) V2/(m·s-1) Q/(g·s-1)
3.6 218.2 321.1 10.267
4.0 224.2 332.4 10.560
4.4 225.5 335.4 10.747

Fig.7

Velocity distribution curve at center line position of section of conical nozzle"

Tab.4

Section velocity and inlet mass flow rate of rectangular nozzles"

K V1/(m·s-1) V2/(m·s-1) Q/(g·s-1)
1 167.2 316.5 9.137
2 167.8 317.5 9.163
[1] 陆世麟. 纺纱过程中异纤清除方法的探讨[J]. 纺织报告, 2018(6):14-15.
LU Shilin. Discussion on foreign fiber cleaning methods in spinning process[J]. Textile Report, 2018(6):14-15.
[2] 盖文桥, 徐雷, 丁曰东. 浅析棉花异性纤维形成的原因、分类、危害和解决措施[J]. 中国纤检, 2017(9):85-86.
GAI Wenqiao, XU Lei, DING Yuedong. Causes,classification,harm and solutions of foreign fibers in cotton[J]. China Fiber Inspection, 2017(9):85-86.
[3] 宋均燕, 王芳, 王春娥. 棉纺织中异纤清除方法、检测及表征[J]. 国际纺织导报, 2013, 41(269):36-40.
SONG Junyan, WANG Fang, WANG Chun'e. Methods、detection and characterization of foreign fiber clearing in cotton textile[J]. Melliand China, 2013, 41(269):36-40.
[4] 黄克华, 李瑞. 棉纺厂异性纤维全面控制方法及应用[J]. 棉纺织技术, 2018, 46(11):42-45.
HUANG Kehua, LI Rui. Comprehensive control method and application of foreign fiber in cotton mill[J]. Cotton Textile Technology, 2018, 46(11):42-45.
[5] 宋均燕, 赵阳, 王芳, 等. 异纤清除机使用效果分析[J]. 棉纺织技术, 2013, 41(7):41-44.
SONG Junyan, ZHAO Yang, WANG Fang, et al. Effect analysis of foreign fiber cleaner[J]. Cotton Textile Technology, 2013, 41(7):41-44.
[6] 邓楼楼, 索双富, 张孝强, 等. Fluent在棉花异性纤维清除机喷嘴结构设计中的应用[J]. 实验技术与管理, 2008(2):98-100,127.
DENG Loulou, SUO Shuangfu, ZHANG Xiaoqiang, et al. The application of fluent in the high-speed nozzle design of heterogeneous fiber sorting machine[J]. Experimental Technology and Management, 2008(2):98-100,127.
[7] 韩启龙, 马洋. 喷嘴结构对高压水射流影响及结构参数优化设计[J]. 国防科技大学学报, 2016, 38(3):68-74.
HAN Qilong, MA Yang. Influence of nozzle structure on high pressure water jet and optimization design of nozzle structure parameter[J]. Journal of National University of Defense Technology, 2016, 38(3):68-74.
[8] 周卫东, 李罗鹏, 孔垂显, 等. 淹没条件下长圆喷嘴流场数值模拟[J]. 中国石油大学学报(自然科学版), 2013, 37(1):80-84.
ZHOU Weidong, LI Luopeng, KONG Chuixian, et al. Numerical simulation of flow field of nozzle with elliptical exit under submerged condition[J]. Journal of China University of Petroleum (Natural Science Edition), 2013, 37(1):80-84.
[9] 张亮, 冯志华, 刘帅, 等. 喷气织机辅助喷嘴喷孔结构优化设计[J]. 纺织学报, 2016, 37(6):112-117, 123.
ZHANG Liang, FENG Zhihua, LIU Shuai, et al. Structure optimization design of auxiliary nozzle for air-jet loom[J]. Journal of Textile Research, 2016, 37(6):112-117, 123.
[10] 胥光申, 孔双祥, 刘洋, 等. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(8):124-129.
XU Guangshen, KONG Shuangxiang, LIU Yang, et al. Comprehensive performance of auxiliary nozzle in air-jet loom based on fluent[J]. Journal of Textile Research, 2018, 39(8):124-129.
[11] 李斯湖, 沈敏, 白聪, 等. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11):161-167.
LI Sihu, SHEN Min, BAI Cong, et al. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field[J]. Journal of Textile Research, 2019, 40(11):161-167.
[12] CHEN T, WANG K, WU L L. Numerical simulation of the air flow field in the foreign fiber separator[J]. Thermal Science Journal, 2016, 20(3):953-956.
[13] 杜玉红, 陈一平, 周志超, 等. 棉花异纤剔除喷管流道形状优化设计[J]. 天津工业大学学报, 2019, 38(4):76-82.
DU Yuhong, CHEN Yiping, ZHOU Zhichao, et al. Optimization design of nozzle flow path shape for foreign fiber sorter[J]. Journal of Tiangong University, 2019, 38(4):76-82.
[14] 张得旺, 姜佳, 韦星. 棉纺厂原棉异纤清除技术探讨[J]. 棉纺织技术, 2019, 47(4):46-48.
ZHANG Dewang, JIANG Jia, WEI Xing. Discussion on removal technology of raw cotton foreign fiber in cotton mill[J]. Cotton Textile Technology, 2019, 47(4):46-48.
[15] SHUKLA V, KAVITI A K. Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models[J]. Energy, 2017, 126:766-79.
doi: 10.1016/j.energy.2017.03.071
[1] ZHU Wenni, XU Runnan, HU Diefei, YAO Juming, MILITKY Jiri, KREMENAKOVA Dana, ZHU Guocheng. Simulation analysis of filtration characteristics of fiber materials based on random algorithm [J]. Journal of Textile Research, 2022, 43(09): 76-81.
[2] YU Yukun, SUN Yue, HOU Jue, LIU Zheng, YICK Kitlun. Dynamic finite element modeling and simulation of single layer clothing ease allowance [J]. Journal of Textile Research, 2022, 43(04): 124-132.
[3] LIU Yisheng, ZHOU Xinlei, LIU Dandan. Effect of yarn's initial position on yarn tucked-in in pneumatic tucked-in selvedge apparatus [J]. Journal of Textile Research, 2022, 43(03): 168-175.
[4] QIAN Miao, HU Hengdie, XIANG Zhong, MA Chengzhang, HU Xudong. Flow and heat transfer characteristics of non-uniform heat-pipe heat exchanger [J]. Journal of Textile Research, 2021, 42(12): 151-158.
[5] ZHOU Haobang, SHEN Min, YU Lianqing, XIAO Shichao. Effect of structural parameter of relay nozzles on characteristics of flow field in profiled reed of air jet loom [J]. Journal of Textile Research, 2021, 42(11): 166-172.
[6] MOU Haolei, XIE Jiang, PEI Hui, FENG Zhenyu, GENG Hongzhang. Ballistic impact tests and numerical simulation of aramid fabric and containment ring [J]. Journal of Textile Research, 2021, 42(11): 56-63.
[7] SHI Qianqian, WANG Jiang, ZHANG Yuze, LIN Huiting, WANG Jun. Numerical analysis on formation mechanism of airflow field in rotor spinning unit [J]. Journal of Textile Research, 2021, 42(02): 180-184.
[8] CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38.
[9] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[10] LI Sihu, SHEN Min, BAI Cong, CHEN Liang. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field [J]. Journal of Textile Research, 2019, 40(11): 161-167.
[11] CHEN Xu, WU Bingyang, FAN Ying, YANG Musheng. Numerical simulation of low temperature protection process for heat storage fabrics [J]. Journal of Textile Research, 2019, 40(07): 163-168.
[12] ZHENG Zhenrong, ZHI Wei, HAN Chenchen, ZHAO Xiaoming, PEI Xiaoyuan. Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux [J]. Journal of Textile Research, 2019, 40(06): 38-43.
[13] CAO Haijian, CHEN Hongxia, HUANG Xiaomei. Numerical simulation of side compressive properties on glass fiber/epoxy resin sandwich composite [J]. Journal of Textile Research, 2019, 40(05): 59-63.
[14] GUO Zhen, LI Xinrong, BU Zhaoning, YUAN Longchao. Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning [J]. Journal of Textile Research, 2019, 40(05): 131-135.
[15] GUANG Shaobo, JIN Yuzhen, ZHU Xiaochen. Analysis on airflow field in extended nozzle of air jet loom [J]. Journal of Textile Research, 2019, 40(04): 135-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!