Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 81-89.doi: 10.13475/j.fzxb.20210810509
• Textile Engineering • Previous Articles Next Articles
JIA Xuefei1, ZHUANG Yi2, TANG Yujing1(), LI Shanshan3, SHI Wen4, ZHANG Lei3, LIU Ming5, ZHOU Jiangming5
CLC Number:
[1] | DOMINIQUE C, BRUNO J G D, FRANCOIS M P M, et al. Method of manufacturing a gas turbine casing out of composite material, and a casing as obtained thereby: US 8322971[P]. 2012-12-04. |
[2] |
WHITENEY T J, CHOU T W. Modeling of 3-D angle-interlock textile structural composites[J]. Journal of Composite Materials, 1989, 23(9): 890-911.
doi: 10.1177/002199838902300902 |
[3] |
BYUN J H, CHOU T W. Elastic properties of three-dimensional angle-interlock fabric preforms[J]. The Journal of the Textile Institute, 1990, 81(4): 538-548.
doi: 10.1080/00405009008658727 |
[4] |
COX B N, DADKHAH M S. The macroscopic elasticity of 3D woven composites[J]. Journal of Composite Materials, 1995, 29(6): 785-819.
doi: 10.1177/002199839502900606 |
[5] |
PORATG I, GREENWOOD K, LI Z. CAD/CAM of three-dimensional woven structures (preforms) for fiber-reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(2): 111-117.
doi: 10.1016/1359-835X(95)00002-J |
[6] | 李姗姗, 陈利, 焦亚男, 等. 2.5维机织物接结经纱缩率的影响因素[J]. 纺织学报, 2010, 31(5): 55-58. |
LI Shanshan, CHEN Li, JIAO Yanan, et al. Experimental research on influential factors of binder warp shrinkage of 2.5-D woven fabric[J]. Journal of Texile Research, 2010, 31(5): 55-58. | |
[7] |
PARDINI L C, GREGORI M L. Modeling elastic and thermal properties of 2.5D carbon fiber and carbon/SiC hybrid matrix composites by homogenization method[J]. Journal of Aerospace Technology and Management, 2010, 2(2): 183-194.
doi: 10.5028/jatm.2010.02026510 |
[8] | 傅华东, 秦岩, 王辉, 等. 2.5D石英纤维增强硼酚醛树脂可陶瓷化复合材料的制备与烧蚀性能[J]. 复合材料学报, 2020, 37(4): 767-774. |
FU Huadong, QIN Yan, WANG Hui, et al. Preparation and ablation performance of 2.5D quartz fiber reinforced boron phenolic resin ceramizable composites[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 767-774. | |
[9] | 胡银生, 余欢, 徐志锋, 等. 2.5D-Cf/Al复合材料的经向高温力学性能及其变形断裂行为[J]. 中国有色金属学报, 2020, 30(3): 507-517. |
HU Yinsheng, YU Huan, XU Zhifeng, et al. High temperature mechanical properties and deformation fracture behavior in warp direction of 2.5D-Cf/Al composites[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 507-517. | |
[10] |
SCHELL J S U, RENGGLI M, VAN L G H, et al. Micro-computed tomography determination of glass fibre reinforced polymer meso-structure[J]. Composites Science and Technology, 2006, 66(13): 2016-2022.
doi: 10.1016/j.compscitech.2006.01.003 |
[11] | 曹海建, 钱坤, 盛东晓. 2.5D 机织复合材料结构与力学性能关系的研究[J]. 玻璃钢/复合材料, 2009(3): 13-15. |
CAO Haijian, QIAN Kun, SHENG Dongxiao. Study on the ralationship between structrure and mechanical properties of 2.5D woven composites[J]. Fiber Reiforced Plastics /Composites, 2009(3): 13-15. | |
[12] | ZHAO S, JAKOB W, MARSCHNER S, et al. Building volumetric appearance models of fabric using micro CT imaging[J]. Communications of the ACM, 2014, 57(11): 98-105. |
[13] | 须颖, 邹晶, 姚淑艳. X射线三维显微镜及其典型应用[J]. CT理论与应用研究, 2014, 23(6): 967-977. |
XU Ying, ZOU Jing, YAO Shuyan. 3D X-ray microscope and its typical applications[J]. Computerized Tomography Theory and Applications, 2014, 23(6): 967-977. | |
[14] | 杨彩云, 李嘉禄. 复合材料用3D角联锁结构预制件的结构设计及新型织造技术[J]. 东华大学学报(自然科学版), 2005, 31(5): 53-58. |
YANG Caiyun, LI Jialu. The structural design and new weaving technique of 3D angle-interlock preforms for composites[J]. Journal of Donghua Univer-sity (Natural Science), 2005, 31(5): 53-58. | |
[15] |
ZHANG DT, CHEN L, WANG YJ, et al. Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model[J]. Journal of Materials Science, 2017, 52(11): 6814-6836.
doi: 10.1007/s10853-017-0921-0 |
[16] | 李小丽, 陈新波, 单柏荣, 等. 飞机复合材料分层缺陷的CT与X射线检测对比试验研究[J]. 无损探伤, 2020, 44(5): 41-43. |
LI Xiaoli, CHEN Xinbo, SHAN Borong, et al. Comparative experimental study on CT and X-ray detection of delamination defective in aircraft composite materials[J]. Nondestructive Testing Technology, 2020, 44(5): 41-43. | |
[17] |
HEARLE J W S. The structural mechanics of fibers[J]. Journal of Polymer Science Part C: Polymer Symposia, 2007, 20(1): 215-251.
doi: 10.1002/polc.5070200118 |
[18] |
XIAO Zhitao, NIE Xinxin, ZHANG Fang, et al. Recognition for woven fabric pattern based on gradient histogram[J]. Journal of The Textile Institute, 2014, 105(7):744-752.
doi: 10.1080/00405000.2013.847542 |
[19] | 李鸣超. 2.5D机织物的织造工艺设计与下机分析[D]. 上海: 东华大学, 2016:10-12. |
LI Mingchao. Weaving process design and analysis leave the machine of 2.5D woven fabric[D]. Shanghai: Donghua University, 2016:10-12. | |
[20] | 李姗姗, 杨桂.层间交织板材织物及其织造方法:201410490331.8[P]. 2014-09-23. |
LI Shanshan, YANG Jia. Interlayer interleaving plate fabric and weaving method thereof:201410490331.8[P]. 2014-09-23. | |
[21] | 张超, 许希武. 二维二轴织造复合材料几何模型及弹性性能预测[J]. 复合材料学报, 2010, 27(5): 129-135. |
ZHANG Chao, XU Xiwu. Geometrical model and elastic properties prediction of 2D biaxial braided composites[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 129-135. | |
[22] | 孙颖, 李嘉禄, 亢一澜, 等. 三维四向编织复合材料刚度的细观力学设计[J]. 纺织学报, 2007, 28(5): 70-73. |
SUN Ying, LI Jialu, KANG Yilan, et al. Stiffness optimization of 3D braided composites with micromechanical method[J]. Journal of Textile Research, 2007, 28(5): 70-73. | |
[23] |
WANG Y G, WANG H J, WEI J H, et al. Finite element analysis of grinding process of long fiber reinforced ceramic matrix woven composites: modeling, experimental verification and material removal mechanism[J]. Ceramics International, 2019, 45(13): 15920-15927.
doi: 10.1016/j.ceramint.2019.05.100 |
[24] | 路怀玉. 2.5维织造复合材料的强度研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 40-52. |
LU Huaiyu. Strength research of 2.5D braided composites[D]. Harbin: Harbin Institute of Technology, 2014: 40-52. | |
[25] | 王浩, 王中伟. 纤维织物复合材料组分材料体分比的显微CT实验测定法[J]. 国防科技大学学报, 2017(3): 185-193. |
WANG Hao, WANG Zhongwei. Volume fraction measurement for component material of textile composite using micro CT experiments[J]. Journal of National University of Defense Technology, 2017(3): 185-193. | |
[26] |
DESPLENTERE F, LOMOV S V, WOERDEMAN D L, et al. Micro-CT characterization of variability in 3D textile architecture[J]. Composites Science and Technology, 2005, 65(13): 1920-1930.
doi: 10.1016/j.compscitech.2005.04.008 |
[27] |
MADRA A, HAJJ N E, BENZEGGAGH M. X-ray microtomography applications for quantitative and qualitative analysis of porosity in woven glass fiber reinforced thermoplastic[J]. Composites Science and Technology, 2014, 95: 50-58.
doi: 10.1016/j.compscitech.2014.02.009 |
[28] | 王雅娜, 曾安民, 陈新文, 等. 2.5D机织石英纤维增强树脂复合材料不同方向力学性能测试与模量预测[J]. 复合材料学报, 2019, 36(6): 1364-1373. |
WANG Yana, ZENG Anmin, CHEN Xinwen, et al. Mechanical properties testing for 2.5D quartz fiber reinforced resin composites in different directions and module prediction[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1364-1373. | |
[29] | 吕青泉, 赵振强, 李超, 等. 2.5D机织复合材料的渐进损伤与失效模拟[J]. 复合材料学报, 2020, 38(8): 2747-2757. |
LÜ Qingquan, ZHAO Zhenqiang, LI Chao, et al. Progressive damage and failure simulation of 2.5D woven composites[J]. Acta Materiae Compositae Sinica, 2020, 38(8): 2747-2757. | |
[30] | 封端佩, 商元元, 李俊. 三维四向和五向织造复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73. |
FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4-and 5-directional 3-D braided composites[J]. Journal of Textile Research, 2020, 41(10): 67-73. | |
[31] |
DALAQ A S, BARTHELAT F. Three-dimensional laser engraving for fabrication of tough glass-based bioinspired materials[J]. JOM, 2020, 72: 1487-1497.
doi: 10.1007/s11837-019-04001-w |
[32] | 喻寅, 王文强, 杨佳, 等. 多孔脆性介质冲击波压缩破坏的细观机理和图像[J]. 物理学报, 2012, 61(4): 1-7. |
YU Yin, WANG Wenqiang, YANG Jia, et al. Mesoscopic picture of fracture in porous brittle material under shock wave compression[J]. Acta Physica Sinica, 2012, 61(4): 1-7. | |
[33] | 田宏伟, 郭伟国. 平纹机织玻璃纤维增强复合材料面内压缩力学行为及破坏机制[J]. 复合材料学报, 2010, 27(2): 133-140. |
TIAN Hongwei, GUO Weiguo. In-plane compressive mechanics behavior and failure mechanism for SW200/LWR-2 glass-woven composite[J]. Acta Materiae Compositae Sinica, 2010, 27(2): 133-140. |