Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (03): 221-230.doi: 10.13475/j.fzxb.20210901210
• Comprehensive Review • Previous Articles Next Articles
TANG Liqin1, LI Yan1,2,3(), MAO Jifu1,2,3, WANG Jun1, WANG Lu1,2,3
CLC Number:
[1] |
YANG Y, GAO W. Wearable and flexible electronics for continuous molecular monitoring[J]. Chemical Society Reviews, 2019. 48(6): 1465-1491.
doi: 10.1039/c7cs00730b pmid: 29611861 |
[2] |
GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514.
doi: 10.1038/nature16521 |
[3] |
CHOI J, BANDODKAR A J, REEDER J T, et al. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature[J]. ACS Sensors, 2019, 4(2): 379-388.
doi: 10.1021/acssensors.8b01218 pmid: 30707572 |
[4] |
HE X, YANG S, PEI Q, et al. Integrated smart janus textile bands for self-pumping sweat sampling and analysis[J]. ACS Sensors, 2020, 5(6): 1548-1554.
doi: 10.1021/acssensors.0c00563 pmid: 32466645 |
[5] |
GAO W, BROOKS G A, KLONOFF D C. Wearable physiological systems and technologies for metabolic monitoring[J]. Journal of Applied Physiology, 2018, 124(3): 548-556.
doi: 10.1152/japplphysiol.00407.2017 pmid: 28970200 |
[6] |
HEIKENFELD J, JAJACK A, FELDMAN B, et al. Accessing analytes in biofluids for peripheral biochemical monitoring[J]. Nature Biotechnology, 2019, 37(4): 407-419.
doi: 10.1038/s41587-019-0040-3 pmid: 30804536 |
[7] |
LI G, WEN D. Wearable biochemical sensors for human health monitoring: sensing materials and manufacturing technologies[J]. Journal of Materials Chemistry B, 2020, 8(16): 3423-3436.
doi: 10.1039/c9tb02474c pmid: 32022089 |
[8] |
BANDODKAR A J, JIA W, YARDIMCI C, et al. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study[J]. Anal Chem, 2015, 87(1): 394-8.
doi: 10.1021/ac504300n pmid: 25496376 |
[9] | TIMOFEEVA I, MEDINSKAIA K, NIKOLAEVA L, et al. Stepwise injection potentiometric determination of caffeine in saliva using single-drop microextraction combined with solvent exchange[J]. Talanta, 2016(150): 655-660. |
[10] |
TIMCHALK C, POET T S, KOUSBA A A, et al. Noninvasive biomonitoring approaches to determine dosimetry and risk following acute chemical exposure: analysis of lead or organophosphate insecticide in saliva[J]. Journal of Toxicology and Environmental Health-Part a-Current Issues, 2004, 67(8/10): 635-650.
doi: 10.1080/15287390490428035 |
[11] |
YAN Q, PENG B, SU G, et al. Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration[J]. Analytical Chemistry, 2011, 83(21): 8341-8346.
doi: 10.1021/ac201700c pmid: 21961809 |
[12] | PROMPHET N, RATTANAWALEEDIROJN P, SIRALERTMUKUL K, et al. Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat ph and lactate[J]. Talanta, 2019(192): 424-430. |
[13] |
PROMPHET N, HINESTROZA J P, RATTANAW-ALEEDIROJN P, et al. Cotton thread-based wearable sensor for non-invasive simultaneous diagnosis of diabetes and kidney failure[J]. Sensors and Actuators B: Chemical, 2020. DOI: 10.1016/j.snb.2020.128549.
doi: 10.1016/j.snb.2020.128549 |
[14] |
CALDARA M, COLLEONI C, GUIDO E, et al. Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating[J]. Sensors and Actuators B: Chemical, 2016, 222: 213-220.
doi: 10.1016/j.snb.2015.08.073 |
[15] |
SALDANHA D J, ABDALI Z, MODAFFERI D, et al. Fabrication of fluorescent pH-responsive protein-textile composites[J]. Scientific Reports, 2020, 10(1): 1-12.
doi: 10.1038/s41598-019-56847-4 |
[16] |
ZHANG J, RUPAKULA M, BELLANDO F, et al. Sweat biomarker sensor incorporating picowatt, three-dimensional extended metal gate ion sensitive field effect transistors[J]. ACS Sensors, 2019, 4(8): 2039-2047.
doi: 10.1021/acssensors.9b00597 pmid: 31282146 |
[17] |
KEENE S T, FOGARTY D, COOKE R, et al. Wearable organic electrochemical transistor patch for multiplexed sensing of calcium and ammonium ions from human perspiration[J]. Advanced Healthcare Materials, 2019. DOI: 10.1002/adhm.201901321.
doi: 10.1002/adhm.201901321 |
[18] | CURRANO L J, SAGE F C, HAGEDON M, et al. Wearable sensor system for detection of lactate in sweat[J]. Scientific Reports, 2018, 8(1): 1-11. |
[19] |
KAYA T, LIU G, HO J, et al. Wearable sweat sensors: background and current trends[J]. Electroanalysis, 2019, 31(3): 411-421.
doi: 10.1002/elan.201800677 |
[20] |
SHIRREFFS S M, MAUGHAN R J. Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content[J]. Journal of Applied Physiology, 1997, 82(1): 336-341.
doi: 10.1152/jappl.1997.82.1.336 pmid: 9029235 |
[21] |
CHOI D-H, KIM J S, CUTTING G R, et al. Wearable potentiometric chloride sweat sensor: the critical role of the salt bridge[J]. Analytical Chemistry, 2016, 88(24): 12241-12247.
doi: 10.1021/acs.analchem.6b03391 |
[22] |
ALIZADEH A, BURNS A, LENIGK R, et al. A wearable patch for continuous monitoring of sweat electrolytes during exertion[J]. Lab on a Chip, 2018, 18(17): 2632-2641.
doi: 10.1039/c8lc00510a pmid: 30063233 |
[23] |
CHOI D H, KITCHEN G, KIM J S, et al. Two distinct types of sweat profile in healthy subjects while exercising at constant power output measured by a wearable sweat sensor[J]. Scientific Reports, 2019, 9(1): 1-9.
doi: 10.1038/s41598-018-37186-2 |
[24] |
XU G, CHENG C, LIU Z, et al. Battery-free and wireless epidermal electrochemical system with all-printed stretchable electrode array for multiplexed in situ sweat analysis[J]. Advanced Materials Technologies, 2019. DOI: 10.1002/admt.201800658.
doi: 10.1002/admt.201800658 |
[25] |
ZHANG Q, JIANG D, XU C, et al. Wearable electrochemical biosensor based on molecularly imprinted ag nanowires for noninvasive monitoring lactate in human sweat[J]. Sensors and Actuators B: Chemical, 2020. DOI: 10.1016/j.snb.2020.128325.
doi: 10.1016/j.snb.2020.128325 |
[26] |
KIM J, SEMPIONATTO J R, IMANI S, et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform[J]. Advanced Science, 2018. DOI: 10.1002/advs.201800880.
doi: 10.1002/advs.201800880 |
[27] |
GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514.
doi: 10.1038/nature16521 |
[28] |
BARIYA M, LI L, GHATTAMANENI R, et al. Glove-based sensors for multimodal monitoring of natural sweat[J]. Science Advances, 2020. DOI: 10.1126/sciadv.abb830.
doi: 10.1126/sciadv.abb830 |
[29] |
CHUNG M, FORTUNATO G, RADACSI N. Wearable flexible sweat sensors for healthcare monitoring: a review[J]. Journal of The Royal Society Interface, 2019.DOI: 10.1098/rsif.2019.0217.
doi: 10.1098/rsif.2019.0217 |
[30] |
CAO Q, LIANG B, TU T, et al. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection[J]. Rsc Advances, 2019, 9(10): 5674-5681.
doi: 10.1039/C8RA09157A |
[31] |
LEI Y, ZHAO W, ZHANG Y, et al. A mxene-based wearable biosensor system for high-performance in vitro perspiration analysis[J]. Small, 2019. DOI: 10.1002/smll.201901190.
doi: 10.1002/smll.201901190 |
[32] | WANG Y, WANG X, LU W, et al. A thin film polyethylene terephthalate (PET) electrochemical sensor for detection of glucose in sweat[J]. Talanta, 2019(198): 86-92. |
[33] |
LIU Q, LIU Y, WU F, et al. Highly sensitive and wearable IN2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids[J]. ACS Nano, 2018, 12(2): 1170-1178.
doi: 10.1021/acsnano.7b06823 |
[34] |
CHO E, MOHAMMADIFAR M, CHOI S. A single-use, self-powered, paper-based sensor patch for detection of exercise-induced hypoglycemia[J]. Micromachines, 2017. DOI: 10.3390/mi8090265.
doi: 10.3390/mi8090265 |
[35] |
HAN J, LI M, LI H, et al. Pt-poly(L-lactic acid) microelectrode-based microsensor for in situ glucose detection in sweat[J]. Biosensors & Bioelectronics, 2020. DOI: 10.1016/j.bios.2020.112675.
doi: 10.1016/j.bios.2020.112675 |
[36] |
CHENG S Y, GAO X, DELACRUZ S, et al. In situ formation of metal-organic framework derived cuo polyhedrons on carbon cloth for highly sensitive non-enzymatic glucose sensing[J]. Journal of Materials Chemistry B, 2019, 7(32): 4990-4996.
doi: 10.1039/c9tb01166h pmid: 31411623 |
[37] | OH S Y, HONG S Y, JEONG Y R, et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13729-13740. |
[38] |
LI Y, XIE M W, ZHANG X P, et al. Co-MOF nanosheet array: a high-performance electrochemical sensor for non-enzymatic glucose detection[J]. Sensors and Actuators B-Chemical, 2019, 278: 126-132.
doi: 10.1016/j.snb.2018.09.076 |
[39] |
WU L, LU Z W, YE J S. Enzyme-free glucose sensor based on layer-by-layer electrodeposition of multilayer films of multi-walled carbon nanotubes and Cu-based metal framework modified glassy carbon electrode[J]. Biosensors & Bioelectronics, 2019, 135: 45-49.
doi: 10.1016/j.bios.2019.03.064 |
[40] |
QIAO Y, ZHANG R, HE F, et al. A comparative study of electrocatalytic oxidation of glucose on conductive Ni-MOF nanosheet arrays with different ligands[J]. New Journal of Chemistry, 2020, 44(41): 17849-17853.
doi: 10.1039/D0NJ04150E |
[41] |
MENON S S, CHANDRAN S V, KOYAPPAYIL A, et al. Copper-based metal-organic frameworks as peroxidase mimics leading to sensitive H2O2 and glucose detection[J]. Chemistryselect, 2018, 3(28): 8319-8324.
doi: 10.1002/slct.201800667 |
[42] |
SHAHROKHIAN S, SANATI E K, HOSSEINI H. Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform[J]. Biosensors & Bioelectronics, 2018, 112: 100-107.
doi: 10.1016/j.bios.2018.04.039 |
[43] |
ZHAO Y, ZHAI Q, DONG D, et al. Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat[J]. Analytical Chemistry, 2019, 91(10): 6569-6576.
doi: 10.1021/acs.analchem.9b00152 pmid: 31006229 |
[44] |
XU Z H, WANG Q Z, HUI Z S, et al. Carbon cloth-supported nanorod-like conductive Ni/Co bimetal MOF: a stable and high-performance enzyme-free electrochemical sensor for determination of glucose in serum and beverage[J]. Food Chemistry, 2021. DOI: 10.1016/j.foodchem.2021.129202.
doi: 10.1016/j.foodchem.2021.129202 |
[45] |
ZHU X F, YUAN S, JU Y H, et al. Water splitting-assisted electrocatalytic oxidation of glucose with a metal-organic framework for wearable nonenzymatic perspiration sensing[J]. Analytical Chemistry, 2019, 91(16): 10764-10771.
doi: 10.1021/acs.analchem.9b02328 pmid: 31361125 |
[46] |
GARCIA S O, ULYANOVA Y V, FIGUEROA-TERAN R, et al. Wearable sensor system powered by a biofuel cell for detection of lactate levels in sweat[J]. Ecs Journal of Solid State Science and Technology, 2016, 5(8): M3075-M3081.
doi: 10.1149/2.0131608jss |
[47] |
LUO X J, YU H R, CUI Y. A wearable amperometric biosensor on a cotton fabric for lactate[J]. IEEE Electron Device Letters, 2018, 39(1): 123-126.
doi: 10.1109/LED.2017.2777474 |
[48] |
YANG Y, SONG Y, BO X, et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat[J]. Nature Biotechnology, 2020, 38(2): 217-224.
doi: 10.1038/s41587-019-0321-x pmid: 31768044 |
[49] |
ELDAMAK A R, FEAR E C. Conformal and disposable antenna-based sensor for non-invasive sweat moni-toring[J]. Sensors, 2018. DOI: 10.3390/s18124088.
doi: 10.3390/s18124088 |
[50] | CUNHA-SILVA H, JULIA ARCOS-MARTINEZ M. Development of a selective chloride sensing platform using a screen-printed platinum electrode[J]. Talanta, 2019(195): 771-777. |
[51] |
HE W, WANG C, WANG H, et al. Integrated textile sensor patch for real-time and multiplex sweat analysis[J]. Science Advances, 2019. DOI: 10.1126/sciadv.aax0649.
doi: 10.1126/sciadv.aax0649 |
[52] |
PARRILLA M, CANOVAS R, JEERAPAN I, et al. A textile-based stretchable multi-ion potentiometric sensor[J]. Advanced Healthcare Materials, 2016, 5(9): 996-1001.
doi: 10.1002/adhm.201600092 pmid: 26959998 |
[53] |
WIOREK A, PARRILLA M, CUARTERO M, et al. Epidermal patch with glucose biosensor: pH and temperature correction toward more accurate sweat analysis during sport practice[J]. Analytical Chemistry, 2020, 92(14): 10153-10161.
doi: 10.1021/acs.analchem.0c02211 pmid: 32588617 |
[54] |
SEMPIONATTO J R, KHORSHED A A, AHMED A, et al. Epidermal enzymatic biosensors for sweat vitamin C: toward personalized nutrition[J]. ACS Sensors, 2020, 5(6): 1804-1813.
doi: 10.1021/acssensors.0c00604 pmid: 32366089 |
[55] |
CHURCHER N K M, UPASHAM S, RICE P, et al. Development of a flexible, sweat-based neuropeptide y detection platform[J]. RSC Advances, 2020, 10(39): 23173-23186.
doi: 10.1039/D0RA03729J |
[56] |
ISLAM A E, MARTINEAU R, CRASTO C M, et al. Graphene-based electrolyte-gated field-effect transistors for potentiometrically sensing neuropeptide y in physiologically relevant environments[J]. ACS Applied Nano Materials, 2020, 3(6): 5088-5097.
doi: 10.1021/acsanm.0c00353 |
[57] |
XIAO X, KUANG Z, BURKE B J, et al. In silico discovery and validation of neuropeptide-y-binding peptides for sensors[J]. Journal of Physical Chemistry B, 2020, 124(1): 61-68.
doi: 10.1021/acs.jpcb.9b09439 |
[58] |
HUYNH V L, TRUNG T Q, MEESEEPONG M, et al. Hollow microfibers of elastomeric nanocomposites for fully stretchable and highly sensitive microfluidic immunobiosensor patch[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202004684.
doi: 10.1002/adfm.202004684 |
[59] |
MUNJE R D, MUTHUKUMAR S, PRASAD S. Interfacial tuning for detection of cortisol in sweat using zno thin films on flexible substrates[J]. IEEE Transactions on Nanotechnology, 2017, 16(5): 832-836.
doi: 10.1109/TNANO.2017.2685529 |
[60] |
PARLAK O, KEENE S T, MARAIS A, et al. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing[J]. Science Advances, 2018. DOI: 10.1126/sciadv.aar2904.
doi: 10.1126/sciadv.aar2904 |
[61] |
TORRENTE-RODRIGUEZ R M, TU J, YANG Y, et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mhealth system[J]. Matter, 2020, 2(4): 921-937.
doi: 10.1016/j.matt.2020.01.021 |
[62] |
TU E, PEARLMUTTER P, TIANGCO M, et al. Comparison of colorimetric analyses to determine cortisol in human sweat[J]. ACS Omega, 2020, 5(14): 8211-8218.
doi: 10.1021/acsomega.0c00498 pmid: 32309731 |
[63] |
TANG W X, YIN L, SEMPIONATTO J R, et al. Touch-based stressless cortisol sensing[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202008465.
doi: 10.1002/adma.202008465 |
[64] |
TEYMOURIAN H, PARRILLA M, SEMPIONATTO J R, et al. Wearable electrochemical sensors for the monitoring and screening of drugs[J]. ACS Sensors, 2020, 5(9): 2679-2700.
doi: 10.1021/acssensors.0c01318 pmid: 32822166 |
[65] |
LIN S, WANG B, YU W, et al. Design framework and sensing system for noninvasive wearable electroactive drug monitoring[J]. ACS Sensors, 2020, 5(1): 265-273.
doi: 10.1021/acssensors.9b02233 pmid: 31909594 |
[66] |
TAI L C, LIAW T S, LIN Y, et al. Wearable sweat band for noninvasive levodopa monitoring[J]. Nano Letters, 2019, 19(9): 6346-6351.
doi: 10.1021/acs.nanolett.9b02478 |
[67] |
BARFIDOKHT A, MISHRA R K, SEENIVASAN R, et al. Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl[J]. Sensors and Actuators B: Chemical, 2019. DOI: 10.1016/j.snb.2019.04.053.
doi: 10.1016/j.snb.2019.04.053 |
[68] |
TAI L C, AHN C H, NYEIN H Y Y, et al. Nicotine monitoring with a wearable sweat band[J]. ACS Sensors, 2020, 5(6): 1831-1837.
doi: 10.1021/acssensors.0c00791 |
[69] |
DE JONG M, SLEEGERS N, KIM J, et al. Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders[J]. Chemical Science, 2016, 7(3): 2364-2370.
doi: 10.1039/c5sc04309c pmid: 29997780 |
[70] |
WINDMILLER J R, BANDODKAR A J, VALDES-RAMIREZ G, et al. Electrochemical sensing based on printable temporary transfer tattoos[J]. Chemical Communications, 2012, 48(54): 6794-6796.
doi: 10.1039/c2cc32839a |
[71] |
BARIYA M, SHAHPAR Z, PARK H, et al. Roll-to-roll gravure printed electrochemical sensors for wearable and medical devices[J]. ACS Nano, 2018, 12(7): 6978-6987.
doi: 10.1021/acsnano.8b02505 pmid: 29924589 |
[72] |
NYEIN H Y Y, BARIYA M, KIVIMAKI L, et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat[J]. Science Advances, 2019. DOI: 10.1126/sciadv.aaw990.
doi: 10.1126/sciadv.aaw990 |
[73] |
NESAEI S, SONG Y, WANG Y, et al. Micro additive manufacturing of glucose biosensors: a feasibility study[J]. Analytica Chimica Acta, 2018, 1043: 142-149.
doi: S0003-2670(18)31070-5 pmid: 30392662 |
[74] |
BAYSAL G, ONDER S, GOCEK I, et al. Microfluidic device on a nonwoven fabric: a potential biosensor for lactate detection[J]. Textile Research Journal, 2014, 84(16): 1729-1741.
doi: 10.1177/0040517514528565 |
[75] |
WANG R, ZHAI Q, GONG S, et al. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat[J]. Talanta, 2021. DOI: 10.1016/j.talanta.2020.121484.
doi: 10.1016/j.talanta.2020.121484 |
[76] | 李萌. Ti3C2Tx修饰的纸基/织物基电化学汗液传感器[D]. 上海: 东华大学, 2021: 26-28. |
LI Meng. Ti3C2Tx modified paper/fabric based electrochemical sweat sensors[D]. Shanghai: Donghua University, 2021: 26-28. | |
[77] |
COPPEDE N, TARABELLA G, VILLANI M, et al. Human stress monitoring through an organic cotton fiber biosensor[J]. Journal of Materials Chemistry B, 2014, 2(34): 5620-5626.
doi: 10.1039/C4TB00317A |
[78] |
ZHAO C, LI X, WU Q, et al. A thread-based wearable sweat nanobiosensor[J]. Biosensors & Bioelectronics, 2021. DOI: 10.1016/j.bios.2021.113270.
doi: 10.1016/j.bios.2021.113270 |
[79] | IMANI S, BANDODKAR A J, MOHAN A M V, et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring[J]. Nature Communications, 2016, 7(1): 1-7. |
[1] | WU Jing, JIANG Zhenlin, JI Peng, XIE Ruimin, CHEN Ye, CHEN Xiangling, WANG Huaping. Research status and development trend of perspective preparation technologies and applications for textiles [J]. Journal of Textile Research, 2023, 44(01): 1-10. |
[2] | FANG Yinchun, CHEN Lüxin, LI Junwei. Preparation and properties of flame retardant and superhydrophobic polyester/cotton fabrics [J]. Journal of Textile Research, 2022, 43(11): 113-118. |
[3] | CHENG Ningbo, MIAO Dongyang, WANG Xianfeng, WANG Zhaohui, DING Bin, YU Jianyong. Review in functional textiles for personal thermal and moisture comfort management [J]. Journal of Textile Research, 2022, 43(10): 200-208. |
[4] | LI Mufang, CHEN Jiaxin, ZENG Fanjia, WANG Dong. Preparation and performance of spacer fabric-based photothermal-thermoelectric composites [J]. Journal of Textile Research, 2022, 43(10): 65-70. |
[5] | CHEN Junxian, LI Weiping, FU Qixuan, FENG Xinxing, ZHANG Hua. Preparation and properties of aramid/flame retardant viscose/flame retardant polyamide blended fabrics [J]. Journal of Textile Research, 2022, 43(09): 107-114. |
[6] | DU Huanzheng, LIU Jiancheng, LU Sha. Green innovation and development of textile industry under dual carbon goals [J]. Journal of Textile Research, 2022, 43(09): 120-128. |
[7] | YANG Huiyu, ZHOU Jingyi, DUAN Zijian, XU Weilin, DENG Bo, LIU Xin. Research progress in textile surface multifunctional modification by atomic layer deposition [J]. Journal of Textile Research, 2022, 43(09): 195-202. |
[8] | XIONG Tanping, TAN Fei, HUANG Cheng, YAN Kelu, ZOU Ni, WANG Zheng, YE Jingping, JI Bolin. Antimicrobial properties of chloramine-grafted polyester/polyamide microfiber knitted fabrics [J]. Journal of Textile Research, 2022, 43(08): 101-106. |
[9] | LIU Huanhuan, WANG Zhaohui, YE Qinwen, CHEN Ziwei, ZHENG Jingjin. Progress and trends in application of wearable technology for emotion recognition [J]. Journal of Textile Research, 2022, 43(08): 197-205. |
[10] | LIU Jiao, CHEN Shaojuan, WU Shaohua. Preparation and properties of silk fibroin/poly(l-lactic acid) nanofiber yarns-based tendon patches [J]. Journal of Textile Research, 2022, 43(08): 60-66. |
[11] | ZHANG Xiaocheng, ZHOU Yan, TIAN Weiguo, QIAO Xin, JIA Fengwei, XU Lili, ZHANG Jinming, ZHANG Jun. Rapid separation and content determination of fibers from waste cotton/polyester blended fabrics [J]. Journal of Textile Research, 2022, 43(07): 1-8. |
[12] | ZHANG Guangzhi, FANG Jin. Preparation and flame retardant properties of environmental biomass based flame retardant PD [J]. Journal of Textile Research, 2022, 43(07): 90-96. |
[13] | YANG Yao, CHENG Wei, YU Yuanyuan, WANG Qiang, WANG Ping, ZHOU Man. Application of antibacterial and antibacterial adhesion finishing agents in cotton fabric modification [J]. Journal of Textile Research, 2022, 43(07): 104-110. |
[14] | LI Ruikai, LI Ruichang, ZHU Lin, LIU Xiangyang. System of seven-lead electrocardiogram monitoring based on graphene fabric electrodes [J]. Journal of Textile Research, 2022, 43(07): 149-154. |
[15] | ZHAO Xin, WANG Caixia, ZHOU Xiaopi, DING Xuemei. Study on sensory evaluation of performance of washed wool sweaters based on ridge regression method [J]. Journal of Textile Research, 2022, 43(07): 155-161. |
|