Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 28-35.doi: 10.13475/j.fzxb.20210901708

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of sound absorbing composites based on use of waste straw/polycaprolactone

LÜ Lihua(), LI Zhen, ZHANG Duoduo   

  1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2021-09-06 Revised:2021-10-21 Online:2022-01-15 Published:2022-01-28

Abstract:

In order to improve the utilization rate of waste straws and broaden its application field, waste straw/polycaprolactone sound absorption composites were prepared by hot pressing with waste straw as reinforcement material and polycaprolactone as matrix material. Under the hot pressing temperature of 120 ℃, pressure of 10 MPa and hot pressing time of 20 min, the influences of straw mass fraction, composite density, composite thickness and thickness of rear air layer on sound absorption performance of the composite were investigated by experiment. The results shows that when the straw mass fraction was 30%, the composite density was 0.450 g/cm3, the composite thickness was 1.5 cm, and the thickness of the rear air layer was 3.0 cm, the waste straw/polycaprolactone sound absorption composite demonstrates excellent sound absorption performance for 100-6 300 Hz frequency, with the average sound absorption coefficient of 0.50, the noise reduction coefficient of 0.50, and the maximum sound absorption coefficient 0.71, which indicate grade Ⅲ of sound absorption performance. The research revealed that the sound absorption mechanism is based on porous structure of the composites.

Key words: waste straw, polycaprolactone, sound absorption performance, composite material, sound absorption mechanism

CLC Number: 

  • TS102.9

Tab.1

Process parameters of composite materials to be optimized"

秸秆质量
分数/%
复合材料密度/
( g·cm-3)
复合材料
厚度/cm
后置空气
层厚度/cm
30 0.450 1.0 0.0
40 0.500 1.5 1.0
50 0.550 2.0 2.0
60 0.600 2.5 3.0

Fig.1

Waste straw/polycaprolactone sound absorption composite"

Tab.2

Sound absorption performance grade"

降噪系数NRC 吸声性能等级
[0.8,+∞)
[0.6,0.8)
[0.4,0.6)
[0.2,0.4)

Fig.2

SEM images of morphological structure of waste corn straw. (a) Hollow structure of abandoned corn straw core (×200);(b) Hollow structure of abandoned corn straw skin (×300);(c) Microstructure of inner surface of abandoned corn straw skin (×600);(d) Microstructure of outer surface of abandoned corn straw skin (×300)"

Fig.3

Effect of straw mass fraction on sound absorption property of waste straw/polycaprolactone sound absorption composites. (a) Influence on sound absorption coefficient;(b) Influence on average sound absorption coefficient and noise reduction coefficient"

Fig.4

Effect of composite density on sound absorption property of waste straw/polycaprolactone sound absorption composites. (a) Influence on sound absorption coefficient;(b) Influence on average sound absorption coefficient and noise reduction coefficient"

Fig.5

Effect of composite thickness on sound absorption coefficient of sound absorption composites"

Fig.6

Pore variation of composite before(a)and after (b)cross-section pores thickness change"

Fig.7

Effect of composite thickness on average sound absorption coefficient and noise reduction coefficient"

Fig.8

Effect of air layer thickness on sound absorption property of waste straw/polycaprolactone sound absorption composite. (a) Influence on sound absorption coefficient;(b) Influence on average sound absorption coefficient and noise reduction coefficient"

Fig.9

Sound absorption coefficient curve of waste straw/polycaprolactone sound absorption composite"

Fig.10

SEM images of waste straw/polycaprolactone sound absorption composite. (a) Surface(×60);(b) Surface (×300); (c) Cross section(×60);(d) Cross section (×300)"

[1] 孙雪, 龚宏健. 噪声污染监测现状及对策探讨[J]. 资源节约与环保, 2021(7): 57-58.
SUN Xue, GONG Hongjian. Current situation and countermeasures of noise pollution monitoring[J]. Resource Conservation and Environmental Protection, 2021(7): 57-58.
[2] 霍丽丽, 赵立欣, 姚宗路, 等. 中国玉米秸秆草谷比及其资源时空分布特征[J]. 农业工程学报, 2020, 36(21): 227-234.
HUO Lili, ZHAO Lixin, YAO Zonglu, et al. Difference of the ratio of maize stovers to grain and spatiotemporal variation characteristics of maize stovers in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 227-234.
[3] 王立新. 玉米秸秆综合利用现状和发展前景[J]. 农业开发与装备, 2021(1): 66-67.
WANG Lixin. Present situation and development prospect of comprehensive utilization of corn straw[J]. Agricultural Development and Equipment, 2021(1): 66-67.
[4] 吴瑕, 徐伯翰, 王景立. 玉米秸秆收获技术与装备发展现状分析[J]. 农业与技术, 2018, 38(21): 72-74.
WU Xia, XU Bohan, WANG Jingli. Analysis of maize straw harvesting technology and equipment development status[J]. Agriculture and Technology, 2018, 38(21): 72-74.
[5] 李涛, 卓海峰, 王文富, 等. 探讨秸秆焚烧的危害与秸秆的综合利用[J]. 科技信息(科学教研), 2008(20): 35,37.
LI Tao, ZHUO Haifeng, WANG Wenfu, et al. Discussion on the harm of straw burning and comprehensive utilization of straw[J]. Science and Technology Information (Science Teaching and Research), 2008(20): 35,37.
[6] 杨军, 余木火, 陈惠芳. 秸秆纤维复合材料的发展概况[J]. 材料导报, 1999(6): 50-51,18.
YANG Jun, YU Muhuo, CHEN Huifang. The development of straw fiber composite materials[J]. Materials Reports, 1999(6): 50-51,18.
[7] 肖力光, 赵露, 陈景义. 利用秸秆制造新型复合节能墙体材料的可行性研究[J]. 吉林建筑工程学院学报, 2004(2): 1-6,13.
XIAO Liguang, ZHAO Lu, CHEN Jingyi. Feasibility study on making new composite energy saving wall material with straw[J]. Journal of Jilin Architectural and Civil Engineering Institute, 2004(2): 1-6,13.
[8] 华亮, 黄银娣. 汽车用新型吸声材料:稻草秸秆板吸声性能的测定[J]. 生物质化学工程, 2007(6): 29-31.
HUA Liang, HUANG Yindi. Determination of sound absorption performance of straw straw board as a new sound absorption material for automobile[J]. Biomass Chemical Engineering, 2007(6): 29-31.
[9] 李长伟, 吕丽华. 废弃羊毛吸声复合材料的制备及其性能[J]. 纺织学报, 2018, 39(10): 74-80.
LI Changwei, LÜ Lihua. Preparation and properties of sound absorption composites based on waste wool[J]. Journal of Textile Research, 2018, 39(10): 74-80.
[10] LYU L H, LIU Y J, BI J H, et al. Sound absorption properties of DFs/EVA composites[J]. Polymers (Basel), 2019, 11(5): 811-827.
doi: 10.3390/polym11050811
[11] LIU Y J, LYU L H, XIONG X Q, et al. Structural characteristics and sound absorption properties of poplar seed fibers[J]. Textile Research Journal, 2020, 90(21/22): 2467-2477.
doi: 10.1177/0040517520921396
[12] 苗中在. 吸声材料在高速公路声屏障中的应用[J]. 中国公路, 2018(9): 86-87.
MIAO Zhongzai. Application of sound absorbing material in sound barrier of highway[J]. China Road, 2018(9): 2467-2477.
[13] MANISH R, SHAHAB F, NARESH T. A study of areca nut leaf sheath fibers as a green sound-absorbing material[J]. Applied Acoustics, 2020, 169:107490-107503.
doi: 10.1016/j.apacoust.2020.107490
[14] 敖庆波, 王建忠, 李烨, 等. 低频吸声材料的研究进展[J]. 功能材料, 2020, 51(12): 12045-12050.
AO Qingbo, WANG Jianzhong, LI Ye, et al. Research progress of low frequency sound absorption materials[J]. Journal of Functional Materials, 2020, 51(12): 12045-12050.
[15] XIE S, YANG S, YANG C, et al. Sound absorption performance of a filled honeycomb composite structure[J]. Applied Acoustics, 2020, 162:107202-107210.
doi: 10.1016/j.apacoust.2019.107202
[16] 李伟, 赵芙蓉. 常用室内吸声材料吸声性能实验研究[J]. 城市住宅, 2019, 26(12): 117-120.
LI Wei, ZHAO Furong. Experimental study on sound absorption properties of several commonly used sound-absorbing materials[J]. Town House, 2019, 26(12): 117-120.
[17] 彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019, 33(21): 3669-3677.
PENG Min, ZHAO Xiaoming. Advances in the fiber-based sound-absorbing materials[J]. Materials Reports, 2019, 33(21): 3669-3677.
[18] 何琳, 朱海潮, 邱小军, 等. 声学理论与工程应用[M]. 北京: 科学出版社, 2006:79-104.
HE Lin, ZHU Haichao, QIU Xiaojun, et al. Acoustic theory and engineering applications[M]. Beijing: Science Press, 2006:79-104.
[19] 吕丽华, 田媛媛, 李洪伟. 废弃苎麻纤维吸声复合材料的制备及其性能分析[J]. 毛纺科技, 2020, 48(4): 7-11.
LÜ Lihua, TIAN Yuanyuan, LI Hongwei. Fabrication and properties of sound-absorbing composites based on waste ramie fibers[J]. Wool Textile Journal, 2020, 48(4): 7-11.
[1] LI Bo, FAN Wei, GAO Xingzhong, WANG Shujuan, LI Zhihu. Carbon fiber reinforced epoxy based vitrimer composite material closed-loop recycling [J]. Journal of Textile Research, 2022, 43(01): 15-20.
[2] CHEN Hainiao, TIAN Wei, JIN Xiaoke, ZHANG Hongxia, LI Yanqing, ZHU Chengyan. Analysis on cross-sectional structure of moso bamboo using three-dimensional microscope imaging [J]. Journal of Textile Research, 2021, 42(12): 49-54.
[3] WEI Xiaoling, LI Ruixue, QIN Zhuo, HU Xinrong, LIN Fusheng, LIU Lingshan, GONG Xiaozhou. Key technologies for formation of warp T-shape preforms [J]. Journal of Textile Research, 2021, 42(11): 51-55.
[4] REN Libing, CHEN Li, JIAO Wei. Microstructure characterization of multi-layer interlocked woven preforms based on quadratic functions [J]. Journal of Textile Research, 2021, 42(08): 76-83.
[5] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[6] QIAO Cancan, JIANG Yaming, QI Yexiong, LIN Wenni, ZHANG Ye. Characterization of shock wave propagation in ceramic reinforced weft-knitted biaxial multilayer yarnlining fabric and woven fabrics composites [J]. Journal of Textile Research, 2021, 42(05): 84-89.
[7] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[8] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[9] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[10] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[11] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[12] CHEN Lifu, YU Weidong. Stab resistance of composites with synthetic diamond filled polyimide resin matrix [J]. Journal of Textile Research, 2020, 41(05): 38-44.
[13] LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on twist energy of carbon nanotube yarns [J]. Journal of Textile Research, 2020, 41(04): 58-63.
[14] ZHANG Hengyu, ZHANG Xiansheng, XIAO Hong, SHI Meiwu. Research progress of two-dimensional carbide in field of flexible electromagnetic absorbing [J]. Journal of Textile Research, 2020, 41(03): 182-187.
[15] LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling. Preparation and electrochemical properties of MnO2/graphene/cotton fabric composite electrode [J]. Journal of Textile Research, 2020, 41(01): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[9] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[10] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .