Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 36-42.doi: 10.13475/j.fzxb.20210902207
• Fiber Materials • Previous Articles Next Articles
DING Qian1,2, DENG Bingyao1, LI Haoxuan1()
CLC Number:
[1] |
VOROSMARTY C J, GREEN P, SALISBURY J, et al. Global water resources:vulnerability from climate change and population growth[J]. Science, 2000, 289(5477): 284-288.
doi: 10.1126/science.289.5477.284 |
[2] |
RODELL M, FAMIGLIETTI J S, WIESE D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557(7739): 651-659.
doi: 10.1038/s41586-018-0123-1 |
[3] | 魏天骐, 李秀强, 李金磊, 等. 界面光蒸汽转化研究进展[J]. 科学通报, 2018, 63(14): 1404-1416. |
WEI Tianqi, LI Xiuqiang, LI Jinlei, et al. Interfacial solar vapor generation[J]. Science Bulletin, 2018, 63(14): 1404-1416.
doi: 10.1016/j.scib.2018.10.005 |
|
[4] |
SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7158): 301-310.
doi: 10.1038/nature06599 |
[5] |
TAO P, NI G, SONG C, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041.
doi: 10.1038/s41560-018-0260-7 |
[6] |
GAO M M, ZHU L L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy Environmental Science, 2019, 12(3): 841-864.
doi: 10.1039/C8EE01146J |
[7] |
ZHOU L, LI X, NI G, et al. The revival of thermal utilization from the sun: interfacial solar vapor generation[J]. National Science Review, 2019, 6(3): 562-578.
doi: 10.1093/nsr/nwz030 |
[8] | 梁洁, 刘鑫, 周林. 等离激元光热效应的新应用:太阳能蒸气产生[J]. 激光与光电子学进展, 2019, 56(20): 67-79. |
LIANG Jie, LIU Xin, ZHOU Lin. Application of plasmon photothermal effect in solar vapor generation[J]. Laser & Optoelectronics Progress, 2019, 56(20): 67-79. | |
[9] |
JUN Y S, WU X H, GHIM D, et al. Photothermal membrane water treatment for two worlds[J]. Accounts of Chemical Research, 2019, 52(5): 1215-1225.
doi: 10.1021/acs.accounts.9b00012 |
[10] |
ZHOU X Y, GUO Y H, ZHAO F, et al. Hydrogels as an emerging material platform for solar water purification[J]. Accounts of Chemical Research, 2019, 52(11): 3244-3253.
doi: 10.1021/acs.accounts.9b00455 |
[11] | 李习标, 关昌峰, 阎华, 等. 碳基材料光热水蒸发研究进展[J]. 化工新型材料, 2021, 49(8): 21-27. |
LI Xibiao, GUAN Changfeng, YAN Hua, et al. Research progress on carbon based materials for solar steam generation[J]. New Chemical Materials, 2021, 49(8): 21-27. | |
[12] |
郝亮, 刘宁, 牛冉, 等. 基于柔性多孔碳/纸浆纤维膜的高性能耐盐太阳能界面蒸发[J]. 中国科学:材料, 2021.DOI : 10.1007/s40843-021-1721-6.
doi: 10.1007/s40843-021-1721-6 |
HAO Liang, LIU Ning, NIU Ran, et al. High-performance salt-resistant solar interfacial evaporation by flexible robust porous carbon/pulp fiber membrane[J]. Science China Materials, 2021.DOI: 10.1007/s40843-021-1721-6.
doi: 10.1007/s40843-021-1721-6 |
|
[13] |
CHEN C J, HU L B. Nanoscale ion regulation in wood-based structures and their device applications[J]. Advanced Materials, 2021.DOI: 10.1002/adma.202002890.
doi: 10.1002/adma.202002890 |
[14] |
XU N, HU X Z, XU W C, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials, 2017.DOI: 10.1002/adma.201606762.
doi: 10.1002/adma.201606762 |
[15] |
ZHAO F, GUO Y, ZHOU X, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401.
doi: 10.1038/s41578-020-0182-4 |
[16] | 李政通, 王成兵. 多尺度Ag/CuO复合光热材料的制备及在海水淡化中的应用[J]. 无机化学学报, 2020, 36(8): 1457-1464. |
LI Zhengtong, WANG Chengbing. Multi-scale Ag/CuO photothermal materials: preparation and application in seawater desalination[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1457-1464. | |
[17] |
TIAN S, HUANG Z M, TAN J H, et al. Manipulating interfacial charge-transfer absorption of cocrystal absorber for efficient solar seawater desalination and water purification[J]. ACS Energy Letters, 2020, 5(8): 2698-2705.
doi: 10.1021/acsenergylett.0c01466 |
[18] |
WU X, GAO T, HAN C H, et al. A photothermal reservoir for highly efficient solar steam generation without bulk water[J]. Science Bulletin, 2019, 64(21): 1625-1633.
doi: 10.1016/j.scib.2019.08.022 |
[19] |
SHI Y, LI R Y, IN Y, et al. A 3D photo thermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2020, 2(6): 1171-1186.
doi: 10.1016/j.joule.2018.03.013 |
[20] |
WANG Y, WANG C, SONG X, et al. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones[J]. Journal of Materials Chemistry A, 2018, 6(21): 9874-9881.
doi: 10.1039/C8TA01469H |
[21] |
LI Y, FAN J, WANG R, et al. 3D tree-shaped hierarchical flax fabric for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2021, 9(4): 2248-2258.
doi: 10.1039/D0TA09570B |
[22] |
CHEN C, KUANG Y, HU L. Challenges and opportunities for solar evaporation[J]. Joule, 2020, 3(3): 683-718.
doi: 10.1016/j.joule.2018.12.023 |
[23] |
ZHOU J, GU Y, LIU P, et al. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions[J]. Advanced Functional Materials, 2019.DOI: 10.1002/adfm.201903255.
doi: 10.1002/adfm.201903255 |
[24] |
XU W C, HU X Z, ZHUANG S L, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884.
doi: 10.1002/aenm.v8.14 |
[25] |
WANG Y, WU X, SHAO B, et al. Boosting solar steam generation by structure enhanced energy management[J]. Science Bulletin, 2020, 65(16): 1380-1388.
doi: 10.1016/j.scib.2020.04.036 |
[26] |
LI J, WANG X, LIN Z, et al. Over 10 kg/(m·h) evaporation rate enabled by a 3D interconnected porous carbon foam[J]. Joule, 2020, 4(4): 1-10.
doi: 10.1016/j.joule.2019.10.011 |
[27] |
WANG F Y, XU N, ZHAO W, et al. A high-performing single-stage invert-structure solar water purifier through enhanced absorption and condensation[J]. Joule, 2021, 5(6): 1602-1612.
doi: 10.1016/j.joule.2021.04.009 |
[28] |
WU T, LI H X, XIE M H, et al. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating[J]. Materials Today Energy, 2019, 12:129-135.
doi: 10.1016/j.mtener.2018.12.008 |
[29] |
ZHU Y, TIAN G, LIU Y, et al. Low-cost,unsinkable,and highly efficient solar evaporators based on coating MWCNTs on nonwovens with unidirectional water-transfer[J]. Advanced Science, 2021.DOI : 10.1002/advs.202101727.
doi: 10.1002/advs.202101727 |
[30] |
ZHANG Q, XIAO X, ZHAO G, et al. An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination[J]. Journal of Materials Chemistry A, 2021, 9(17): 10945-10952.
doi: 10.1039/D1TA01295A |
[31] |
WANG F, WEI D, LI Y, et al. Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(31): 18311-18317.
doi: 10.1039/C9TA05859A |
[32] | 陈亚丽, 赵国猛, 任李培, 等. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(8): 115-121. |
CHEN Yali, ZHAO Guomeng, REN Lipei, et al. Preparation and performance of aramid fabric-based interfacial photothermal evaporation materials[J]. Journal of Textile Research, 2021, 42(8): 115-121. | |
[33] | LI H, WEN H, LI J, et al. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26033-26040. |
[34] |
LI H, WEN H, ZHANG Z, et al. Inverse thinking of aggregation-induced emission principle:amplifying molecular motions to boost photothermal efficiency of nanofibers[J]. Angewandte Chemie International Edition, 2020, 59(46): 20371-20375.
doi: 10.1002/anie.v59.46 |
[35] |
LI H, ZHU W, LI M, et al. Side area-assisted 3D evaporator with antibiofouling function for ultra-efficient solar steam generation[J]. Advanced Materials, 2021.DOI: 10.1002/adma.202102258.
doi: 10.1002/adma.202102258 |
[1] | LIU Yang, XIA Zhaopeng, WANG Liang, FAN Jie, ZENG Qiang, LIU Yong. Development status and trend of antivirus medical protective clothing [J]. Journal of Textile Research, 2021, 42(09): 195-202. |
[2] | ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel/polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26. |
[3] | AN Qi, FU Yijun, ZHANG Yu, ZHANG Wei, WANG Lu, LI Dawei. Research progress of nonwovens for medical protective garment [J]. Journal of Textile Research, 2020, 41(08): 188-196. |
[4] | LIU Yuhao, SUN Hui, WANG Jieqi, YU Bin. Preparation of TiO2/MIL-88B(Fe)/polypropylene composite melt-blown nonwovens and study on dye degradation properties [J]. Journal of Textile Research, 2020, 41(02): 95-102. |
[5] | ZOU Zhiwei, QIAN Xiaoming, QIAN Yao, ZHAO Baobao, DUO Yongchao. Effect of oil removal on charging performance of needle-punched nonwoven filters [J]. Journal of Textile Research, 2019, 40(06): 79-84. |
[6] | . Novel desalination process and application of regenerated silk fibroin solution [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 20-24. |
[7] | . Preparation and properties of bicomponent spunbond-spunlance nonwoven materials with gradient structure [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 56-61. |
[8] | . Research progress on deep treatment and recycling of dye wastewater [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 172-180. |
[9] | . Sound absorption properties of nonwoven material based on wool and its hybrid fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 67-71. |
[10] | . Influence of corona electret treatment on melt-blow PLA nonwovens material [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 13-17. |
[11] | . Preparation of polyphenylene sulfide spunbonded nonwovens material and its filterability [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(10): 51-55. |
|