Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (12): 69-74.doi: 10.13475/j.fzxb.20210904006
• Textile Engineering • Previous Articles Next Articles
GUO Weina, XIN Sanfa, HU Wenfeng, GAO Yantao()
CLC Number:
[1] |
CAO S Y, WANG J, WANG H. Effect of heat treatment on the microstructure and tensile strength of KD-II SiC fibers[J]. Materials Science and Engineering: A, 2016, 673:55-62.
doi: 10.1016/j.msea.2016.07.066 |
[2] |
WANG X, SONG Z L, CHENG Z L, et al. Tensile creep properties and damage mechanisms of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fiber[J]. Journal of the European Ceramic Society, 2020, 40(14):4872-4878.
doi: 10.1016/j.jeurceramsoc.2020.01.033 |
[3] |
WU B B, NI N, ZHAO X, et al. Strength retention in scheelite coated SiC fibers: effect of the gas composition and pre-heat treatment[J]. Journal of the European Ceramic Society, 2020, 40(8):2801-2810.
doi: 10.1016/j.jeurceramsoc.2020.02.031 |
[4] |
BHATT R T, KISER J D. Creep behavior and failure mechanisms of CVI and PIP SiC/SiC composites at temperatures to 1650 ℃ in air[J]. Journal of the European Ceramic Society, 2021, 41(13):6196-6206.
doi: 10.1016/j.jeurceramsoc.2021.05.059 |
[5] |
YU P P, LIN Z J, YU J. Mechanical, thermal, and dielectric properties of SiCf/SiC composites reinforced with electrospun SiC fibers by PIP[J]. Journal of the European Ceramic Society, 2021, 41(14):6859-6868.
doi: 10.1016/j.jeurceramsoc.2021.07.020 |
[6] |
WANG Y L, WANG W L, HUANG J H, et al. Joining of Cf/SiC composite and 304 stainless steel assisted by surface honeycomb modification[J]. Journal of the European Ceramic Society, 2021, 41(14):6824-6833.
doi: 10.1016/j.jeurceramsoc.2021.07.009 |
[7] |
EBEL C, MIERZW A, KIND K. Yarn damage during braiding of reinforcement fibers for composites[J]. Advances in Braiding Technology, 2015. DOI:10.1016/b978-0-08-100407-4.00013-2.
doi: 10.1016/b978-0-08-100407-4.00013-2 |
[8] | WANG P R, LIU F Q, WANG H, et al. A review of third generation SiC fibers and SiCf/SiC composites[J]. Journal of Materials Science & Technology, 2019, 35(12):2743-2750. |
[9] | WANG H, WANG J, SONG Y C, et al. Research progress of polymer-derived continuous silicon carbide fibers[J]. Aeronautical Manufacturing Technology, 2014, (6):41-44. |
[10] |
KIM J Y, HWANG Y T, BAEK J H, et al. Study on inter-ply friction between woven and unidirectional prepregs and its effect on the composite forming process[J]. Composite Structures, 2021. DOI:10.1016/j.compstruct.2021.113888.
doi: 10.1016/j.compstruct.2021.113888 |
[11] |
XIANG Z N, LIU Y N, ZHOU X Q, et al. Interlayer contact mechanism of the frictional behavior of glass-fiber woven fabrics and improvements of winding characteristics[J]. Composite Structures, 2020. DOI:10.1016/j.compstruct.2019.111497.
doi: 10.1016/j.compstruct.2019.111497 |
[12] |
PRASHANT S H, HARISHA P, SAMPATH K L, et al. Study on flexural behavior of glass-fiber reinforced polymer matrix composite[J]. Materials Today: Proceedings, 2021, 54:159-162.
doi: 10.1016/j.matpr.2021.08.200 |
[13] |
LAU K W, DIAS T. Knittability of high-modulus yarns[J]. Journal of The Textile Institute, 1993, 85(2):173-190.
doi: 10.1080/00405009408659018 |
[14] |
AAVCI S, CURISKIS J I, PAILTHORPE M T. Knittability of glass fiber weft-knitted preforms for composites[J]. Textile Research Journal, 2001, 71(1):15-21.
doi: 10.1177/004051750107100103 |
[15] | LIU X M, CHEN N L, FENG X W. Effect of yarn parameters on the knittability of glass ply yarn[J]. Fibers & Textiles in Eastern Europe, 2008, 16 (5):90-93. |
[16] |
WANG Q M, YANG X, GAO J, et al. Knittability of basalt fiber weft-knitted fabrics for composite reinforcement based on properties of advanced composite materials[J]. Advanced Materials Research, 2012, 583: 207-210.
doi: 10.4028/www.scientific.net/AMR.583.207 |
[17] |
TOURLONIAS M, BUENO M. Experimental simulation of friction and wear of carbon yarns during the weaving process[J]. Composites: Part A, 2016, 80:228-236.
doi: 10.1016/j.compositesa.2015.07.024 |
[18] | WU N, HAN M Y, JIAO Y N, et al. Research progress on weavability of high-performance fibers[J]. Aeronautical Manufacturing Technology, 2020, 63(15): 81-89. |
[19] |
RUDOV-CLARK S, MOURITZ A P, LEE L, et al. Fibre damage in the manufacture of advanced three-dimensional woven composites[J]. Composites: Part A, 2003, 34(10):963-970.
doi: 10.1016/S1359-835X(03)00213-6 |
[20] | KOVALCHENKO A M, GOEL S, ZAKIEV I M, et al. Suppressing scratch induced brittle fracture in silicon by geometric design modification of the abrasive grits[J]. Journal of Materials Research & Technology, 2019, 8(1):703-712. |
[21] |
DUAN Y D, QIU H P, YANG T T, et al. Flexural failure mechanism of 2.5D woven SiCf/SiC composites: combination of acoustic emission, digital image correlation and X-ray tomography[J]. Composite Communications, 2021. DOI: 10.1016/j.coco.2021.100921.
doi: 10.1016/j.coco.2021.100921 |
[22] |
XUE Y D, HU J B, ZHOU H J, et al. Damage development of a woven SiCf/SiC composite during multi-step fatigue tests at room temperature[J]. Ceramics International, 2020, 46(14):22116-22126.
doi: 10.1016/j.ceramint.2020.05.270 |
[23] | 马刚峰, 徐泽夕, 常青, 等. 碳纤维上浆剂的开发和研究进展[J]. 现代纺织技术, 2012, 20(5):61-64. |
MA Gangfeng, XU Zexi, CHANG Qing, et al. Development and research progress of carbon fiber sizing agent[J]. Advanced Textile Technology, 2012, 20(5):61-64. | |
[24] | 张如良, 黄玉东, 刘丽, 等. 上浆剂分子量对碳纤维表观性能及其界面性能影响研究[J]. 材料科学与工艺, 2011, 19(3):137-143. |
ZHANG Ruliang, HUANG Yudong, LIU Li, et al. Effect of the molecular weight of sizing agent on the carbon fiber surface and interface properties[J]. Materials Science and Technology, 2011, 19(3):137-143.
doi: 10.1179/174328413X13789825316707 |
|
[25] |
XIE B, ZHAO H D, LONG H, et al. 3D characteristics of pores in SiC particle preforms with different starch contents by X-ray micro-computed tomography[J]. Ceramics International, 2019, 45(15):23924-23933.
doi: 10.1016/j.ceramint.2019.07.281 |
[26] | 鲁祥勇, 李效东, 彭平, 等. 碳化硅纤维乳液上胶剂的研究[J]. 化工新型材料, 1999(5):33-35. |
LU Xiangyong, LI Xiaodong, PENG Ping, et al. Study on the emulsion type sizing agent for SiC fiber[J]. New Chemical Materials, 2017, 38(3):78-84. | |
[27] | 赵玉芬, 李嘉禄, 宋磊磊, 等. 上浆剂对国产碳化硅纤维表面及其织造性能的影响[J]. 纺织学报, 2017, 38(3):78-84. |
ZHAO Yufen, LI Jialu, SONG Leilei, et al. Influence of sizing agent on surface and weaving performance of SiC fibers[J]. Journal of Textile Research, 2017, 38(3):78-84. | |
[28] |
GUO W N, GAO Y T, HU W F, et al. Study on the mechanical property of high-performance silicon carbon fiber[J]. Advanced Engineering Materials, 2022. DOI: 10.10021adem.2101407.
doi: 10.10021adem.2101407 |
[29] | 朱梅. 高模量纤维纱线针织可编织性能的研究[D]. 上海: 东华大学, 2004:11-12. |
ZHU Mei. A Study on the knittability of high-modulus fibre yarns[D]. Shanghai: Donghua University, 2004:11-12. | |
[30] |
CORNELISSEN B, ROOIJ M B D, RIETMAN B, et al. Frictional behaviour of high performance fibrous tows: a contact mechanics model of tow-metal friction[J]. Wear, 2013, 305(1-2):78-88.
doi: 10.1016/j.wear.2013.05.014 |
[31] | 熊小曼. 机织生产中影响织造效率及成品质量的摩擦作用研究[D]. 武汉: 武汉纺织大学, 2013:25-27. |
XIONG Xiaoman. A study on primary friction effect that influence weaving efficiency and product quality during weaving process[D]. Wuhai: Wuhan Textile University, 2013:25-27. |
[1] | YUAN Tianxing, SUN Zhihong, LÜ Hongzhan, LI Xueqing, GU Shenghui. Study on braiding of knotless netting [J]. Journal of Textile Research, 2019, 40(09): 70-74. |
[2] | SUN Weihong, RUAN Mianjiang, SHAO Tiefeng, LIANG Man. Detection method of cohesive performance of raw silk based on machine vision [J]. Journal of Textile Research, 2019, 40(08): 164-168. |
[3] | . Design of three-dimensional complex shaped overall braiding chassis device [J]. Journal of Textile Research, 2018, 39(12): 107-112. |
|