Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (12): 69-74.doi: 10.13475/j.fzxb.20210904006

• Textile Engineering • Previous Articles     Next Articles

Study on damage performance of silicon carbide fiber bundles in braiding process

GUO Weina, XIN Sanfa, HU Wenfeng, GAO Yantao()   

  1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2021-09-13 Revised:2022-05-08 Online:2022-12-15 Published:2023-01-06
  • Contact: GAO Yantao E-mail:gaoyantao@sues.edu.cn

Abstract:

In view of the problem that the abrasion of silicon carbide (SiC) fiber bundles during the braiding process will lead to decrease of its braidability, the frictional behavior between SiC fiber bundles and mechanical components was simulated by a self-made load controllable clamping fixture based on the conventional clamping force machine (Y731D). The effects of normal load, friction speed and cyclic number of frictions on the wear behavior of SiC fiber bundles were investigated. The study shows that the tensile fracture of SiC fibers exhibited obvious brittle fracture behavior, the number of frictional fracture cycles of SiC fiber bundles decreased significantly with the increase of normal load and frictional speed, and the tensile strength and elongation at break decreased significantly with the increase of friction times. After 100 times cyclic friction, the tensile strength and elongation at break of SiC fiber bundles are decreased by 73% and 53%, respectively, compared with the original sample. It is observed that the major type of damages experienced by the SiC fiber bundles are fiber dispersion, fiber pick and fiber fracture.

Key words: SiC fiber bundle, normal load, number of friction, wear behavior, braiding process

CLC Number: 

  • TQ343+.6

Fig.1

Schematic diagram of simulated experimental setup. (a) Holding force machine; (b) Friction clamps; (c) Speed button"

Fig.2

Schematic diagram of fiber bundle in friction process"

Fig.3

Schematic diagram of tensile test. (a) Stretching device stretching part; (b) Sample card production process"

Tab.1

Relevant parameters of several yarns"

类别 断裂强度/N 断裂伸长率/%
SiC纤维束 160.25 1.01
纯棉纱线 5.98 11.50
羊毛/腈纶混纺纱线 8.40 14.31
涤纶长丝 7.63 20.45

Fig.4

Fractography of SiC fiber"

Fig.5

Frictional morphology of SiC fiber bundles at different friction times"

Tab.2

Mechanical properties of SiC fiber bundles at different friction times"

摩擦次数 拉伸强力/N 断裂伸长率/%
0 160.25 1.01
40 92.30 0.60
70 71.50 0.49
100 43.95 0.47
[1] CAO S Y, WANG J, WANG H. Effect of heat treatment on the microstructure and tensile strength of KD-II SiC fibers[J]. Materials Science and Engineering: A, 2016, 673:55-62.
doi: 10.1016/j.msea.2016.07.066
[2] WANG X, SONG Z L, CHENG Z L, et al. Tensile creep properties and damage mechanisms of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fiber[J]. Journal of the European Ceramic Society, 2020, 40(14):4872-4878.
doi: 10.1016/j.jeurceramsoc.2020.01.033
[3] WU B B, NI N, ZHAO X, et al. Strength retention in scheelite coated SiC fibers: effect of the gas composition and pre-heat treatment[J]. Journal of the European Ceramic Society, 2020, 40(8):2801-2810.
doi: 10.1016/j.jeurceramsoc.2020.02.031
[4] BHATT R T, KISER J D. Creep behavior and failure mechanisms of CVI and PIP SiC/SiC composites at temperatures to 1650 ℃ in air[J]. Journal of the European Ceramic Society, 2021, 41(13):6196-6206.
doi: 10.1016/j.jeurceramsoc.2021.05.059
[5] YU P P, LIN Z J, YU J. Mechanical, thermal, and dielectric properties of SiCf/SiC composites reinforced with electrospun SiC fibers by PIP[J]. Journal of the European Ceramic Society, 2021, 41(14):6859-6868.
doi: 10.1016/j.jeurceramsoc.2021.07.020
[6] WANG Y L, WANG W L, HUANG J H, et al. Joining of Cf/SiC composite and 304 stainless steel assisted by surface honeycomb modification[J]. Journal of the European Ceramic Society, 2021, 41(14):6824-6833.
doi: 10.1016/j.jeurceramsoc.2021.07.009
[7] EBEL C, MIERZW A, KIND K. Yarn damage during braiding of reinforcement fibers for composites[J]. Advances in Braiding Technology, 2015. DOI:10.1016/b978-0-08-100407-4.00013-2.
doi: 10.1016/b978-0-08-100407-4.00013-2
[8] WANG P R, LIU F Q, WANG H, et al. A review of third generation SiC fibers and SiCf/SiC composites[J]. Journal of Materials Science & Technology, 2019, 35(12):2743-2750.
[9] WANG H, WANG J, SONG Y C, et al. Research progress of polymer-derived continuous silicon carbide fibers[J]. Aeronautical Manufacturing Technology, 2014, (6):41-44.
[10] KIM J Y, HWANG Y T, BAEK J H, et al. Study on inter-ply friction between woven and unidirectional prepregs and its effect on the composite forming process[J]. Composite Structures, 2021. DOI:10.1016/j.compstruct.2021.113888.
doi: 10.1016/j.compstruct.2021.113888
[11] XIANG Z N, LIU Y N, ZHOU X Q, et al. Interlayer contact mechanism of the frictional behavior of glass-fiber woven fabrics and improvements of winding characteristics[J]. Composite Structures, 2020. DOI:10.1016/j.compstruct.2019.111497.
doi: 10.1016/j.compstruct.2019.111497
[12] PRASHANT S H, HARISHA P, SAMPATH K L, et al. Study on flexural behavior of glass-fiber reinforced polymer matrix composite[J]. Materials Today: Proceedings, 2021, 54:159-162.
doi: 10.1016/j.matpr.2021.08.200
[13] LAU K W, DIAS T. Knittability of high-modulus yarns[J]. Journal of The Textile Institute, 1993, 85(2):173-190.
doi: 10.1080/00405009408659018
[14] AAVCI S, CURISKIS J I, PAILTHORPE M T. Knittability of glass fiber weft-knitted preforms for composites[J]. Textile Research Journal, 2001, 71(1):15-21.
doi: 10.1177/004051750107100103
[15] LIU X M, CHEN N L, FENG X W. Effect of yarn parameters on the knittability of glass ply yarn[J]. Fibers & Textiles in Eastern Europe, 2008, 16 (5):90-93.
[16] WANG Q M, YANG X, GAO J, et al. Knittability of basalt fiber weft-knitted fabrics for composite reinforcement based on properties of advanced composite materials[J]. Advanced Materials Research, 2012, 583: 207-210.
doi: 10.4028/www.scientific.net/AMR.583.207
[17] TOURLONIAS M, BUENO M. Experimental simulation of friction and wear of carbon yarns during the weaving process[J]. Composites: Part A, 2016, 80:228-236.
doi: 10.1016/j.compositesa.2015.07.024
[18] WU N, HAN M Y, JIAO Y N, et al. Research progress on weavability of high-performance fibers[J]. Aeronautical Manufacturing Technology, 2020, 63(15): 81-89.
[19] RUDOV-CLARK S, MOURITZ A P, LEE L, et al. Fibre damage in the manufacture of advanced three-dimensional woven composites[J]. Composites: Part A, 2003, 34(10):963-970.
doi: 10.1016/S1359-835X(03)00213-6
[20] KOVALCHENKO A M, GOEL S, ZAKIEV I M, et al. Suppressing scratch induced brittle fracture in silicon by geometric design modification of the abrasive grits[J]. Journal of Materials Research & Technology, 2019, 8(1):703-712.
[21] DUAN Y D, QIU H P, YANG T T, et al. Flexural failure mechanism of 2.5D woven SiCf/SiC composites: combination of acoustic emission, digital image correlation and X-ray tomography[J]. Composite Communications, 2021. DOI: 10.1016/j.coco.2021.100921.
doi: 10.1016/j.coco.2021.100921
[22] XUE Y D, HU J B, ZHOU H J, et al. Damage development of a woven SiCf/SiC composite during multi-step fatigue tests at room temperature[J]. Ceramics International, 2020, 46(14):22116-22126.
doi: 10.1016/j.ceramint.2020.05.270
[23] 马刚峰, 徐泽夕, 常青, 等. 碳纤维上浆剂的开发和研究进展[J]. 现代纺织技术, 2012, 20(5):61-64.
MA Gangfeng, XU Zexi, CHANG Qing, et al. Development and research progress of carbon fiber sizing agent[J]. Advanced Textile Technology, 2012, 20(5):61-64.
[24] 张如良, 黄玉东, 刘丽, 等. 上浆剂分子量对碳纤维表观性能及其界面性能影响研究[J]. 材料科学与工艺, 2011, 19(3):137-143.
ZHANG Ruliang, HUANG Yudong, LIU Li, et al. Effect of the molecular weight of sizing agent on the carbon fiber surface and interface properties[J]. Materials Science and Technology, 2011, 19(3):137-143.
doi: 10.1179/174328413X13789825316707
[25] XIE B, ZHAO H D, LONG H, et al. 3D characteristics of pores in SiC particle preforms with different starch contents by X-ray micro-computed tomography[J]. Ceramics International, 2019, 45(15):23924-23933.
doi: 10.1016/j.ceramint.2019.07.281
[26] 鲁祥勇, 李效东, 彭平, 等. 碳化硅纤维乳液上胶剂的研究[J]. 化工新型材料, 1999(5):33-35.
LU Xiangyong, LI Xiaodong, PENG Ping, et al. Study on the emulsion type sizing agent for SiC fiber[J]. New Chemical Materials, 2017, 38(3):78-84.
[27] 赵玉芬, 李嘉禄, 宋磊磊, 等. 上浆剂对国产碳化硅纤维表面及其织造性能的影响[J]. 纺织学报, 2017, 38(3):78-84.
ZHAO Yufen, LI Jialu, SONG Leilei, et al. Influence of sizing agent on surface and weaving performance of SiC fibers[J]. Journal of Textile Research, 2017, 38(3):78-84.
[28] GUO W N, GAO Y T, HU W F, et al. Study on the mechanical property of high-performance silicon carbon fiber[J]. Advanced Engineering Materials, 2022. DOI: 10.10021adem.2101407.
doi: 10.10021adem.2101407
[29] 朱梅. 高模量纤维纱线针织可编织性能的研究[D]. 上海: 东华大学, 2004:11-12.
ZHU Mei. A Study on the knittability of high-modulus fibre yarns[D]. Shanghai: Donghua University, 2004:11-12.
[30] CORNELISSEN B, ROOIJ M B D, RIETMAN B, et al. Frictional behaviour of high performance fibrous tows: a contact mechanics model of tow-metal friction[J]. Wear, 2013, 305(1-2):78-88.
doi: 10.1016/j.wear.2013.05.014
[31] 熊小曼. 机织生产中影响织造效率及成品质量的摩擦作用研究[D]. 武汉: 武汉纺织大学, 2013:25-27.
XIONG Xiaoman. A study on primary friction effect that influence weaving efficiency and product quality during weaving process[D]. Wuhai: Wuhan Textile University, 2013:25-27.
[1] YUAN Tianxing, SUN Zhihong, LÜ Hongzhan, LI Xueqing, GU Shenghui. Study on braiding of knotless netting [J]. Journal of Textile Research, 2019, 40(09): 70-74.
[2] SUN Weihong, RUAN Mianjiang, SHAO Tiefeng, LIANG Man. Detection method of cohesive performance of raw silk based on machine vision [J]. Journal of Textile Research, 2019, 40(08): 164-168.
[3] . Design of three-dimensional complex shaped overall braiding chassis device [J]. Journal of Textile Research, 2018, 39(12): 107-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!