Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (10): 38-44.doi: 10.13475/j.fzxb.20210904207

• Textile Engineering • Previous Articles     Next Articles

Optimization of full spectrum color matching algorithm for color spun yarn based on visual characteristics

CHENG Lu1, MA Chongqi2, ZHOU Huimin1, WANG Ying1, XIA Xin1()   

  1. 1. Xinjiang University, Urumqi, Xinjiang 830046, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2021-09-13 Revised:2022-04-04 Online:2022-10-15 Published:2022-10-28
  • Contact: XIA Xin E-mail:xjxiaxin@163.com

Abstract:

In order to improve the accuracy and applicability of computer color matching algorithm for color spunyarns, a full-spectrum color matching algorithm was proposed based on the classical Stearns Noechel optical theoretical model, aiming at the problems that it is difficult to minimize error in calculated color difference value and that in matching relative deviation. The sensitivity coefficient of human visual characteristics to reflected light at different wavelengths was determined by exploring human visual characteristics, and it was introduced into the color matching algorithm for weighted calculation to predict the monochrome fiber mixing ratio. The color matching effect was evaluated by predicting the color difference value, the relative deviation value of the ratio and the Euclidean distance. Results show that the color matching algorith with Poisson distribution introduced to the human eye sensitivity coefficient is optimal, with the average prediction color difference value being 0.29 and all within 1, the ratio of the average relative deviation value being minimal 0.612, Euclidean distance average being 0.087 which is relatively small. When using the improved color matching algorithm, the prediction of the color difference value can be achieved through one calculation, leading to a small color difference with higher accuracy. With the improved algorithm, computer assisted color matching for color spunyarns can be primarily achieved.

Key words: color spun yarn, full spectrum color matching, visual characteristic, color difference, relative deviation in color matching, computer color matching algorithm

CLC Number: 

  • TS104.5

Fig.1

Reflectance curve of monochromatic sample"

Tab.1

Number and quality ratio of mixed standard color sample"

试样
编号
纤维
质量比
试样
编号
纤维
质量比
试样
编号
纤维
质量比
1# 0.1∶0.8∶0.1 19# 0.3∶0.5∶0.2 37# 0.1∶0.7∶0.2
2# 0.1∶0.7∶0.2 20# 0.3∶0.3∶0.4 38# 0.1∶0.1∶0.8
3# 0.1∶0.6∶0.3 21# 0.3∶0.2∶0.5 39# 0.2∶0.7∶0.1
4# 0.1∶0.5∶0.4 22# 0.3∶0.1∶0.6 40# 0.2∶0.6∶0.2
5# 0.1∶0.4∶0.5 23# 0.4∶0.5∶0.1 41# 0.2∶0.5∶0.3
6# 0.1∶0.3∶0.6 24# 0.4∶0.4∶0.2 42# 0.3∶0.6∶0.1
7# 0.1∶0.2∶0.7 25# 0.4∶0.3∶0.3 43# 0.3∶0.5∶0.2
8# 0.1∶0.1∶0.8 26# 0.4∶0.2∶0.4 44# 0.3∶0.4∶0.3
9# 0.2∶0.7∶0.1 27# 0.4∶0.1∶0.5 45# 0.4∶0.5∶0.1
10# 0.2∶0.6∶0.2 28# 0.5∶0.4∶0.1 46# 0.4∶0.4∶0.2
11# 0.2∶0.5∶0.3 29# 0.5∶0.3∶0.2 47# 0.4∶0.3∶0.3
12# 0.2∶0.4∶0.4 30# 0.5∶0.2∶0.3 48# 0.5∶0.4∶0.1
13# 0.2∶0.3∶0.5 31# 0.5∶0.1∶0.4 49# 0.5∶0.3∶0.2
14# 0.2∶0.2∶0.6 32# 0.6∶0.3∶0.1 50# 0.6∶0.3∶0.1
15# 0.2∶0.1∶0.7 33# 0.6∶0.2∶0.2 51# 0.6∶0.2∶0.2
16# 0.3∶0.6∶0.1 34# 0.6∶0.1∶0.3 52# 0.7∶0.2∶0.1
17# 0.1∶0.8∶0.1 35# 0.7∶0.2∶0.1 53# 0.7∶0.1∶0.2
18# 0.1∶0.7∶0.2 36# 0.1∶0.8∶0.1 54# 0.8∶0.1∶0.1

Fig.2

Chromatic diagram of sample"

Tab.2

Calculation results of initial fitting which were not improved"

样品编号 预测配比 色差 配比偏差 欧式距离 样品编号 预测配比 色差 配比偏差 欧式距离
1# 0.08∶0.73∶0.19 0.20 1.21 0.11 28# 0.45∶0.28∶0.27 0.40 0.60 0.10
2# 0.05∶0.70∶0.24 0.15 0.71 0.07 29# 0.51∶0.16∶0.33 0.46 0.80 0.09
3# 0.05∶0.63∶0.32 0.16 0.61 0.06 30# 0.51∶0.35∶0.14 0.40 0.70 0.11
4# 0.05∶0.57∶0.37 0.04 0.68 0.09 31# 0.53∶0.26∶0.21 0.47 0.49 0.10
5# 0.06∶0.50∶0.44 0.11 0.75 0.12 32# 0.58∶0.16∶0.25 0.51 0.82 0.08
6# 0.07∶0.37∶0.56 0.04 0.61 0.09 33# 0.62∶0.25∶0.13 0.51 0.65 0.10
7# 0.09∶0.30∶0.61 0.28 0.70 0.13 34# 0.66∶0.17∶0.17 0.52 0.93 0.09
8# 0.15∶0.23∶0.62 0.62 2.00 0.23 35# 0.72∶0.17∶0.11 0.53 0.86 0.10
9# 0.18∶0.62∶0.20 0.05 1.21 0.13 36# 0.10∶0.79∶0.11 1.28 0.14 0.02
10# 0.16∶0.53∶0.31 0.06 0.90 0.14 37# 0.14∶0.70∶0.15 1.91 0.68 0.06
11# 0.15∶0.50∶0.36 0.03 0.46 0.08 38# 0.08∶0.15∶0.77 0.53 0.70 0.06
12# 0.15∶0.46∶0.39 0.13 0.40 0.07 39# 0.17∶0.72∶0.12 0.59 0.35 0.04
13# 0.16∶0.36∶0.48 0.27 0.42 0.07 40# 0.22∶0.62∶0.15 1.57 0.40 0.06
14# 0.20∶0.30∶0.50 0.45 0.70 0.14 41# 0.23∶0.54∶0.23 1.63 0.49 0.09
15# 0.25∶0.19∶0.56 0.49 1.38 0.18 42# 0.29∶0.61∶0.10 0.87 0.08 0.02
16# 0.25∶0.59∶0.16 0.15 0.79 0.08 43# 0.28∶0.52∶0.20 0.78 0.13 0.03
17# 0.25∶0.46∶0.29 0.20 0.71 0.11 44# 0.26∶0.45∶0.29 0.86 0.31 0.07
18# 0.25∶0.31∶0.44 0.26 0.32 0.07 45# 0.35∶0.53∶0.12 0.37 0.37 0.06
19# 0.27∶0.23∶0.51 0.31 0.27 0.05 46# 0.39∶0.43∶0.17 0.76 0.24 0.04
20# 0.31∶0.15∶0.54 0.31 0.63 0.08 47# 0.46∶0.34∶0.20 1.17 0.59 0.12
21# 0.35∶0.46∶0.18 0.29 1.02 0.10 48# 0.47∶0.44∶0.09 0.41 0.23 0.05
22# 0.33∶0.44∶0.24 0.29 0.46 0.09 49# 0.51∶0.33∶0.16 0.66 0.32 0.05
23# 0.34∶0.35∶0.31 0.32 0.36 0.08 50# 0.60∶0.33∶0.07 0.37 0.45 0.05
24# 0.37∶0.27∶0.36 0.35 0.52 0.08 51# 0.61∶0.21∶0.18 0.50 0.17 0.02
25# 0.42∶0.16∶0.42 0.40 0.79 0.10 52# 0.76∶0.20∶0.04 0.51 0.67 0.08
26# 0.43∶0.40∶0.16 0.39 0.77 0.09 53# 0.72∶0.13∶0.15 0.34 0.58 0.06
27# 0.42∶0.35∶0.22 0.39 0.44 0.10 54# 0.80∶0.12∶0.08 0.53 0.49 0.03

Tab.3

Calculation result of initial prediction is optimized for first time (Normal distribution)"

样品编号 预测配比 色差 配比偏差 欧式距离 样品编号 预测配比 色差 配比偏差 欧式距离
1# 0.07∶0.76∶0.16 0.26 0.97 0.08 28# 0.46∶0.26∶0.28 0.04 0.41 0.07
2# 0.05∶0.72∶0.23 0.23 0.68 0.06 29# 0.34∶0.06∶0.60 0.18 1.18 0.26
3# 0.05∶0.63∶0.32 0.22 0.61 0.06 30# 0.53∶0.32∶0.15 0.21 0.66 0.09
4# 0.05∶0.57∶0.37 0.05 0.68 0.09 31# 0.54∶0.25∶0.21 0.30 0.41 0.08
5# 0.06∶0.52∶0.42 0.11 0.83 0.15 32# 0.59∶0.16∶0.25 0.13 0.73 0.07
6# 0.07∶0.40∶0.53 0.06 0.71 0.12 33# 0.49∶0.06∶0.46 0.18 4.58 0.44
7# 0.09∶0.29∶0.62 0.33 0.66 0.13 34# 0.52∶0.06∶0.42 0.06 1.75 0.29
8# 0.15∶0.22∶0.63 0.68 1.91 0.21 35# 0.62∶0.05∶0.32 0.26 2.95 0.29
9# 0.17∶0.64∶0.19 0.04 1.07 0.11 36# 0.11∶0.82∶0.07 0.72 0.47 0.04
10# 0.15∶0.55∶0.29 0.12 0.78 0.11 37# 0.15∶0.73∶0.12 1.17 1.00 0.10
11# 0.15∶0.50∶0.35 0.03 0.44 0.07 38# 0.08∶0.13∶0.79 0.16 0.56 0.04
12# 0.15∶0.49∶0.35 0.06 0.59 0.12 39# 0.17∶0.74∶0.10 0.32 0.25 0.05
13# 0.17∶0.41∶0.42 0.21 0.67 0.14 40# 0.23∶0.65∶0.11 0.96 0.68 0.11
14# 0.20∶0.32∶0.48 0.48 0.79 0.17 41# 0.25∶0.57∶0.18 0.87 0.76 0.15
15# 0.26∶0.19∶0.55 0.51 1.43 0.19 42# 0.29∶0.63∶0.08 0.66 0.24 0.03
16# 0.26∶0.58∶0.17 0.14 0.83 0.08 43# 0.29∶0.55∶0.15 0.09 0.36 0.07
17# 0.24∶0.50∶0.26 0.20 0.51 0.08 44# 0.28∶0.49∶0.23 0.22 0.53 0.11
18# 0.26∶0.34∶0.40 0.21 0.29 0.06 45# 0.36∶0.55∶0.10 0.02 0.25 0.07
19# 0.28∶0.25∶0.47 0.18 0.36 0.06 46# 0.41∶0.46∶0.13 0.05 0.53 0.09
20# 0.32∶0.16∶0.52 0.11 0.76 0.10 47# 0.47∶0.36∶0.18 0.70 0.78 0.15
21# 0.35∶0.47∶0.18 0.34 0.95 0.10 48# 0.48∶0.45∶0.07 0.16 0.48 0.06
22# 0.33∶0.43∶0.24 0.15 0.43 0.08 49# 0.55∶0.34∶0.11 0.30 0.65 0.11
23# 0.35∶0.35∶0.31 0.12 0.32 0.07 50# 0.61∶0.33∶0.05 0.35 0.61 0.06
24# 0.37∶0.25∶0.37 0.01 0.41 0.07 51# 0.61∶0.22∶0.17 0.47 0.22 0.03
25# 0.29∶0.07∶0.64 0.24 0.85 0.18 52# 0.76∶0.20∶0.04 0.87 0.69 0.08
26# 0.45∶0.39∶0.17 0.36 0.80 0.09 53# 0.72∶0.13∶0.15 0.34 0.59 0.06
27# 0.43∶0.34∶0.23 0.21 0.40 0.08 54# 0.80∶0.13∶0.08 0.54 0.49 0.03

Tab.4

Second optimization predicted the results of initial calculation (Poisson distribution)"

样品编号 预测配比 色差 配比偏差 欧式距离 样品编号 预测配比 色差 配比偏差 欧式距离
1# 0.07∶0.75∶0.18 0.08 1.07 0.09 28# 0.45∶0.26∶0.29 0.23 0.42 0.08
2# 0.05∶0.73∶0.22 0.13 0.65 0.06 29# 0.50∶0.15∶0.35 0.24 0.63 0.07
3# 0.05∶0.64∶0.31 0.13 0.60 0.06 30# 0.51∶0.36∶0.13 0.21 0.69 0.12
4# 0.05∶0.58∶0.37 0.02 0.69 0.09 31# 0.52∶0.29∶0.19 0.35 0.62 0.12
5# 0.06∶0.50∶0.44 0.05 0.75 0.13 32# 0.58∶0.16∶0.26 0.31 0.73 0.07
6# 0.07∶0.38∶0.55 0.01 0.64 0.10 33# 0.62∶0.25∶0.13 0.49 0.66 0.10
7# 0.09∶0.29∶0.62 0.19 0.63 0.11 34# 0.65∶0.17∶0.18 0.38 0.92 0.09
8# 0.13∶0.18∶0.69 0.55 1.23 0.14 35# 0.71∶0.20∶0.09 0.51 1.16 0.13
9# 0.18∶0.63∶0.19 0.01 1.12 0.11 36# 0.09∶0.84∶0.07 0.48 0.43 0.05
10# 0.15∶0.55∶0.30 0.05 0.81 0.12 37# 0.12∶0.73∶0.15 0.86 0.54 0.07
11# 0.15∶0.50∶0.36 0.03 0.46 0.08 38# 0.08∶0.16∶0.77 0.35 0.83 0.07
12# 0.15∶0.49∶0.36 0.08 0.57 0.11 39# 0.16∶0.73∶0.11 0.19 0.35 0.05
13# 0.17∶0.39∶0.44 0.08 0.58 0.11 40# 0.21∶0.66∶0.12 0.64 0.55 0.10
14# 0.19∶0.29∶0.51 0.31 0.65 0.13 41# 0.22∶0.56∶0.21 0.85 0.54 0.11
15# 0.24∶0.17∶0.58 0.36 1.12 0.15 42# 0.30∶0.63∶0.07 0.40 0.35 0.04
16# 0.22∶0.65∶0.13 0.04 0.63 0.09 43# 0.27∶0.53∶0.20 0.50 0.16 0.04
17# 0.25∶0.47∶0.29 0.16 0.69 0.11 44# 0.26∶0.46∶0.28 0.64 0.34 0.07
18# 0.25∶0.37∶0.38 0.21 0.42 0.08 45# 0.35∶0.54∶0.12 0.22 0.39 0.07
19# 0.28∶0.25∶0.47 0.21 0.42 0.07 46# 0.40∶0.44∶0.17 0.52 0.26 0.05
20# 0.33∶0.17∶0.50 0.09 1.00 0.13 47# 0.46∶0.34∶0.20 0.69 0.64 0.13
21# 0.35∶0.46∶0.19 0.28 1.05 0.10 48# 0.47∶0.44∶0.09 0.28 0.25 0.05
22# 0.32∶0.45∶0.23 0.17 0.45 0.10 49# 0.52∶0.33∶0.15 0.45 0.35 0.06
23# 0.34∶0.35∶0.31 0.20 0.35 0.08 50# 0.61∶0.33∶0.06 0.26 0.49 0.05
24# 0.36∶0.25∶0.39 0.19 0.38 0.07 51# 0.61∶0.21∶0.18 0.34 0.19 0.03
25# 0.42∶0.15∶0.44 0.18 0.65 0.08 52# 0.76∶0.20∶0.04 0.48 0.68 0.08
26# 0.42∶0.44∶0.14 0.27 0.70 0.10 53# 0.73∶0.13∶0.15 0.22 0.60 0.07
27# 0.43∶0.34∶0.23 0.30 0.44 0.09 54# 0.80∶0.12∶0.07 0.37 0.53 0.04

Fig.3

Comparison of color matching algorithm before and after improvement. (a) Comparison of chromatic aberration; (b) Comparison of ratio relative deviation; (c) Comparison of Euclidean distance"

[1] 徐亚亚, 杨瑞华, 邓茜茜. 多通道转杯纺羊毛织物的Stearns-Noechel配色模型[J]. 东华大学学报(自然科学版), 2020, 46(3):357-361.
XU Yaya, YANG Ruihua, DENG Qianqian. Stearns-Noechel color matching model for multi-channel rotor spun wool fabric[J]. Journal of Donghua Univer-sity(Nutural Science Edition), 2020, 46(3):357-361.
[2] 杨瑞华, 潘博, 郭霞, 等. 环锭纺及转杯纺和喷气涡流纺混色纱的纤维混合效果研究[J]. 纺织学报, 2021, 42(7):76-81, 88.
YANG Ruihua, PAN Bo, GUO Xia, et al. Study on fiber mixing effect in ring spun, rotor and air-jet-vortex spun color blended yarns[J]. Journal of Textile Research, 2021, 42(7):76-81, 88.
[3] YANG Ruihua, PAN Bo, ZHANG Kanglei, et al. Stearns-Noechel color matching model of digital rotor spinning viscose melange yarn[J]. Cellulose, 2021, 28(15): 10039-10053.
doi: 10.1007/s10570-021-04167-0
[4] 王玉娟, 汪军. 原配色丝颜色预测模型[J]. 纺织学报, 2021, 42(2):156-160.
WANG Yujuan, WANG Jun. Color prediction model of compound filament[J]. Journal of Textile Research, 2021, 42(2):156-160.
[5] 马崇启, 朱宝基, 刘凤坤, 等. 基于Stearns-Noechel模型的色纺纱配色算法改进[J]. 天津工业大学学报, 2019, 38(3):41-46.
MA Chongqi, ZHU Baoji, LIU Fengkun, et al. Improvement of color matching algorithm for color spinning based on Stearns-Noechel model[J]. Journal of Tiangong University, 2019, 38(3):41-46.
[6] 马崇启, 程璐, 金晓, 等. Stearns-Noechel模型的全光谱纱线配色算法[J]. 光谱学与光谱分析, 2018, 38(8): 2488-2492.
MA Chongqi, CHENG Lu, JIN Xiao, et al. Research on all spectral yarn color matching algorithm based on Stearns-Noechel model[J]. Spectroscopy and Spectral Analysis, 2018, 38(8):2488-2492.
[7] 程璐, 陈婷婷, 曹吉强, 等. 基于光谱反射率的色纺纱计算机修色算法[J]. 纺织学报, 2020, 41(9):39-44.
CHENG Lu, CHEN Tingting, CAO Jiqiang, et al. Computer color correction algorithm for color spinning based on spectral reflectance[J]. Journal of Textile Research, 2020, 41(9):39-44.
[8] 马崇启, 程璐, 王玉娟, 等. 基于Friele模型的彩色纤维混色配方算法[J]. 纺织学报, 2017, 38(12):33-37.
MA Chongqi, CHENG Lu, WANG Yujuan, et al. Color fiber mixing formula algorithm based on Friele model[J]. Journal of Textile Research, 2017, 38(12):33-37.
[9] 杨瑞华, 韩瑞叶, 徐亚亚, 等. 数码转杯纺混色纱中有色纤维混合效果分析[J]. 纺织学报, 2018, 39(7): 32-38.
YANG Ruihua, HAN Ruiye, XU Yaya, et al. Analysis on blending effect of colored fiber in digital rotor spun yarn[J]. Journal of Textile Research, 2018, 39(7): 32-38.
[10] SHEN J, ZHOU X, MA H, et al. Spectrophotometric prediction of pre-colored fiber blends with a hybrid model based on artificial neural network and Stearns-Noechel model[J]. Textile Research Journal, 2016, 87(3): 77-80.
[11] BURLONE D A. Theoretical and practical aspects of selected fiber-blend color formulation functions[J]. Color Research and Application, 1984, 9: 213-219.
doi: 10.1002/col.5080090406
[12] 何颂华, 陈桥, 段江. 基于人眼视觉特性的光谱降维模型研究[J]. 光谱学与光谱分析, 2015, 35(6):1459-1463.
pmid: 26601347
HE Songhua, CHEN Qiao, DUAN Jiang. The research of spectral dimension redection method based on human visual characteristics[J]. Spectroscopy and Spectral Analysis, 2015, 35(6):1459-1463.
pmid: 26601347
[13] 程璐. 色纺纱配色算法改进及计算机测配色系统开发[D]. 天津: 天津工业大学, 2018:34-38.
CHENG Lu. Improvement of color matching algorithm and development of computer color matching system for color spinning[D]. Tianjin: Tiangong University, 2018:34-38.
[1] YANG Liu, LI Yujia, ZHANG Xin, HE Wenjing, TONG Shenghao, MA Lei, ZHANG Yi, ZHANG Ruiyun. Effect of tightness of colored knitted fabrics on color prediction [J]. Journal of Textile Research, 2022, 43(05): 104-108.
[2] ZHANG Aidan, GUO Zhenni, WANG Yangzi. Comparative research on color simulation optimization of jacquard fabric based on modularized compound full-color structure [J]. Journal of Textile Research, 2021, 42(10): 67-74.
[3] XU Xuemei. Improved genetic algorithm for fabric formulation prediction based on simulated annealing algorithm [J]. Journal of Textile Research, 2021, 42(07): 123-128.
[4] YUAN Li, XIONG Ying, GU Qian, WANG Danshu, HUO Da, LIU Junping. Characteristics and factorial study of color transfer between dyed fiber and colored spun yarns [J]. Journal of Textile Research, 2021, 42(05): 122-129.
[5] QIU Kebin, CHEN Weiguo, ZHOU Hua. Comparison of spectral imaging and spectrophotometry in fabric color measurement [J]. Journal of Textile Research, 2020, 41(11): 73-80.
[6] CHENG Lu, CHEN Tingting, CAO Jiqiang, WANG Ying, XIA Xin. Computerized color modification algorithm for color spinning based on spectral reflectance [J]. Journal of Textile Research, 2020, 41(09): 39-44.
[7] YING Shuangshuang, QIU Kebin, GUO Yufei, ZHOU Jiu, ZHOU Hua. Error optimization for measuring color chart data in textile color management [J]. Journal of Textile Research, 2020, 41(08): 74-80.
[8] ZHANG Ge, ZHOU Jian, WANG Lei, PAN Ruru, GAO Weidong. Influencing factors for fiber color measurement by spectrophotometer [J]. Journal of Textile Research, 2020, 41(04): 72-77.
[9] .  Coloration characteristics and influence factors of colored spun fabric based on primary-color fibers blending [J]. Journal of Textile Research, 2018, 39(10): 38-43.
[10] . Color difference measurement of dyed fabrics using digital camera  [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 77-82.
[11] . Parameter optimizing of Stearns-Noechel model in color matching of cotton colored spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 31-37.
[12] . Color fiber mixing formula algorithm based on Friele model [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 33-37.
[13] . Color difference comparison of colored spun yarns by different spinning processes [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 29-34.
[14] . Comparative research on tradetional pouch difference between North and South regions [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 121-125.
[15] . Application of Stearns-Noechel model on color blending of naturally colored cotton [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(01): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!