Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 153-160.doi: 10.13475/j.fzxb.20210904808

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Study on solubility of disperse dyes in supercritical carbon dioxide fluid

HAN Zhixin1,2, WU Wei1,2, WANG Jian3, XU Hong1,2,4, MAO Zhiping1,2,4,5()   

  1. 1. Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
    3. Qingdao Jifa Group Co., Ltd., Qingdao, Shandong 266000, China
    4. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    5. National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
  • Received:2021-09-13 Revised:2021-10-13 Online:2022-01-15 Published:2022-01-28
  • Contact: MAO Zhiping E-mail:zhpmao@dhu.edu.cn

Abstract:

To better screen disperse dyes suitable for supercritical carbon dioxide (ScCO2) fluid dyeing, a prediction method for assessing disperse dye solubility in supercritical CO2 fluid was established based on the use of state equation method, the group contribution method and computational chemistry method, achieving different conditions and different dye structures of disperse dye solubility in supercritical CO2 fluid. The results show that different working conditions affect the solubility of Disperse Blue 79 dyes, and lower temperature and higher pressure are more favorable to the dissolution process. From the perspective of molecular structure, the solubility of anthraquinone disperse dyes in supercritical CO2 fluid is lower than that of azo dyes because the anthraquinone dyes have better molecular flatness and are conducive to π-π stacking. The solubility of disperse dyes can be effectively improved by decreasing the interaction between molecules within dyes or increasing the interaction between dyes and ScCO2 fluid. It was concluded that introducing alkyl groups or groups containing C=O into the molecular structure of dye can improve the solubility of dye in ScCO2 fluid.

Key words: disperse dye, supercritical carbon dioxide fluid staining, equation of state, solubility, molecular dynamics simulation

CLC Number: 

  • O647.9

Tab.1

Predicted values of various basic physical quantities of Dispersed Blue 79"

临界温
度/K
临界压
力/MPa
沸点/
K
偏心因子
ω
摩尔体积/
(cm3·mol-1)
饱和蒸汽压/MPa
363.15 K 373.15 K 383.15 K 393.15 K 403.15 K
1 332.44 1.073 57 1 052.2 0.721 7 417.2 6.544 6×10-16 2.690 3×10-15 1.019 4×10-14 3.583 1×10-14 1.175 2×10-13

Tab.2

Literature reported and predicted solubility of Disperse Blue 79 in ScCO2 fluids under different temperatures and pressures"

温度/K 压力/MPa 溶解度/(mol·mol-1)
模拟计算值 文献报道值
363.15 16 1.63×10-7 1.34×10-7
20 1.08×10-6 7.88×10-7
24 2.33×10-6 3.72×10-6
28 2.38×10-5
373.15 16 1.73×10-7
20 1.17×10-6
24 1.51×10-6
28 6.69×10-6
383.15 16 1.74×10-7
20 2.44×10-7
24 3.95×10-6
28 3.09×10-6
393.15 16 1.39×10-7 1.47×10-7
20 5.66×10-7 6.51×10-7
24 3.47×10-6 2.98×10-6
28 5.08×10-6
403.15 16 1.50×10-7
20 1.35×10-6
24 1.02×10-6
28 1.08×10-5

Tab.3

Predicted free energies of solvation, sublimation and dissolution of Disperse Blue 79 in ScCO2fluids"

温度/
K
压力/
MPa
自由能平均值/(kJ·mol-1)
溶剂化自由能 升华自由能 溶解自由能
363.15 16 -61.753 9 63.846 8 2.092 926
20 -66.605 3 -2.758 48
24 -67.710 3 -3.863 54
28 -73.340 3 -9.489 33
373.15 16 -59.171 2 61.222 27 2.051 067
20 -64.290 5 -3.068 23
24 -63.955 6 -2.733 36
28 -67.229 0 -6.010 88
383.15 16 -56.488 1 58.618 67 2.130 599
20 -56.781 1 1.833 403
24 -64.579 3 -5.960 65
28 -62.515 7 -3.897 03
393.15 16 -53.114 3 56.040 18 2.925 91
20 -56.931 8 -0.891 59
24 -61.816 7 -5.780 66
28 -61.833 4 -5.793 22
403.15 16 -50.757 6 53.482 63 2.724 99
20 -57.342 0 -3.859 36
24 -55.487 7 -2.005 02
28 -62.109 7 -8.627 04

Tab.4

Calculated values of physical quantities of different disperse dyes"

分散染料 临界温
度/K
临界压
力/MPa
沸点/
K
偏心因子 饱和蒸
汽压/MPa
摩尔体积/
(cm3·mol-1)
溶剂化自由能/
(kJ·mol-1)
溶解度/
(mol·mol-1)
升华自由能/
(kJ·mol-1)
溶解自由能/
(kJ·mol-1)
分散蓝60 1 059.5 2.368 860.5 1.701 2 3.82×10-15 253.70 -47.722 9 1.04×10-9 64.964 42 17.241 520
分散蓝134 939.9 1.914 748.6 1.257 0 2.90×10-10 264.80 -32.151 5 8.20×10-7 27.304 31 -4.847 220
分散绿6:1 1 070.1 1.682 867.1 1.369 9 1.65×10-13 323.70 -41.151 1 1.05×10-8 52.339 89 11.188 780
分散紫28 964.0 3.295 745.3 1.309 3 5.67×10-11 187.50 -34.118 9 1.66×10-7 32.775 22 -1.343 660
分散红60 985.3 3.006 768.2 1.340 5 1.49×10-11 230.40 -37.115 9 1.45×10-7 37.258 27 0.142 319
分散红165 108 7.4 1.534 884.9 1.346 8 9.54×10-14 363.10 -39.573 0 4.99×10-9 54.181 67 14.608 620
分散红302 1 003.7 2.368 812.8 1.657 3 1.61×10-13 259.60 -44.022 6 1.51×10-8 52.436 17 8.413 562
分散蓝79 1 332.4 1.074 1 052.2 0.721 7 1.18×10-13 417.20 -55.487 7 1.05×10-6 53.482 63 -2.005 020
分散蓝183 1 121.0 1.389 915.6 1.308 5 3.12×10-14 331.60 -59.305 1 4.70×10-7 57.932 19 -1.377 150
分散蓝284 1 112.2 1.450 908.3 1.344 9 2.85×1 0 - 1 4 316.30 -61.737 1 7.94×10-7 58.233 57 -3.503 560
分散橙30 1 083.8 1.288 884.5 1.227 8 5.74×10-13 325.10 -53.273 3 1.36×10-6 48.166 6 -5.106 740
分散红167 1 157.9 1.091 939.2 1.006 3 5.59×10-13 387.10 -50.849 7 1.01×10-6 48.254 5 -2.595 230
分散黄163 1 097.3 1.352 894.5 1.257 3 2.03×10-13 303.00 -48.225 2 9.14×10-8 51.649 23 3.424 027

Tab.5

Solvation free energies and their decomposition of different disperse dyes in ScCO2 fluids"

染料
类型
染料种类 对自由能的贡献/(kJ·mol-1) 溶剂化自由能/
(kJ·mol-1)
库仑 范德华
蒽醌类 B60 -11.416 2 -36.305 3 -47.721 5
P28 -7.209 4 -26.909 4 -34.117 5
G6:1 -2.228 3 -38.921 4 -41.149 7
R302 -9.434 9 -34.586 3 -44.021 2
B134 -4.025 4 -28.126 1 -32.151 5
R165 -0.840 0 -38.733 1 -39.573 0
R60 -6.511 8 -30.605 6 -37.115 9
偶氮类 B79 -10.378 5 -45.109 2 -55.487 7
O30 -15.164 7 -38.107 2 -53.273 3
Y163 -16.479 7 -31.746 9 -48.226 6
R167 -11.253 9 -39.593 8 -50.849 7
B183 -28.542 5 -30.762 6 -59.305 1
B284 -20.940 4 -40.796 7 -61.737 1
B354 -10.372 5 -38.466 6 -48.841 9

Fig.1

Electrostatic potentials of disperse dye and CO2 molecules"

Fig.2

Spatial distribution function of CO2 molecules"

Fig.3

RDG diagram of interactions between two dye molecules in Disperse Blue 79 and Disperse Green 6:1 dye crystals"

Tab.6

Dye uptake of disperse dyes for PET yarns in ScCO2 fuilds"

染料名称 上染率/%
分散蓝60 58.8
分散蓝79 100.0
分散橙30 100.0
分散黄163 31.0
[1] 郑环达, 郑来久. 超临界流体染整技术研究进展[J]. 纺织学报, 2015, 36(9): 141-146.
ZHENG Huanda, ZHENG Laijiu. Research development of supercritical fluid dyeing and finishing[J]. Journal of Textile Research, 2015, 36(9): 141-146.
[2] 王纯怡, 吴伟, 王建, 等. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(9): 95-101.
WANG Chunyi, WU Wei, WANG Jian, et al. Molecular dynamics simulation of solubility of C.I. Disperse Brown 19 in supercritical CO2 and water[J]. Journal of Textile Research, 2020, 41(9): 95-101.
[3] WU J S, ZHAO H J, WANG M Y, et al. A novel natural dye derivative for natural fabric supercritical carbon dioxide dyeing technology[J]. Fibers and Polymers, 2019, 20(11): 2376-2382.
doi: 10.1007/s12221-019-9029-2
[4] 胡金花, 闫俊, 李红, 等. 分散红11在超临界二氧化碳中的溶解度及其模型拟合[J]. 纺织学报, 2019, 40(8): 80-85.
HU Jinhua, YAN Jun, LI Hong, et al. Solubility of Dispersed Red 11 in supercritical carbon dioxide and model fitting[J]. Journal of Textile Research, 2019, 40(8): 80-85.
[5] TAMURA K, ALWI R S. Solubility of anthraquinone derivatives in supercritical carbon dioxide[J]. Dyes and Pigments, 2015, 113:351-356.
doi: 10.1016/j.dyepig.2014.09.003
[6] HOSSEIN R, NADER H L. A new simple model for calculation of solubilities of derivatized anthraquinone compounds in supercritical carbon dioxide[J]. Chemical Papers, 2020, 74(3): 985-993.
doi: 10.1007/s11696-019-00936-1
[7] BAGHERI H, MANSOORI A G, HASHEMIPOUR H. A novel approach to predict drugs solubility in supercritical solvents for ress process using various cubic eos-mixing rule[J]. Journal of Molecular Liquids, 2018, 261:174-188.
doi: 10.1016/j.molliq.2018.03.081
[8] ALWI R S, GARLAPATI C, TAMURA K. Solubility of anthraquinone derivatives in supercritical carbon dioxide: new correlations[J]. Molecules, 2021, 26(2): 460.
doi: 10.3390/molecules26020460
[9] KONG X, HUANG T, CUI H, et al. Multicomponent system of trichromatic disperse dye solubility in supercritical carbon dioxide[J]. Journal of CO2 Utilization, 2019, 33:1-11.
[10] MCDONAGH J L, PALMER D S, MOURIK T, et al. Are the sublimation thermodynamics of organic molecules predictable?[J]. Journal of Chemical Information and Modeling, 2016, 56(11): 2162-2179.
doi: 10.1021/acs.jcim.6b00033
[11] 陈钟秀, 顾飞燕, 胡望明. 化工热力学[M]. 2版. 北京: 化学工业出版社, 2001:10-40.
CHEN Zhongxiu, GU Feiyan, HU Wangming. Chemical thermodynamics[M]. 2nd ed. Beijing: Chemical Industry Press, 2001:10-40.
[12] JOBACK K G, REID R. Estimation of pure-component properties from group-contributions[J]. Chemical Engineering Communications, 1987, 57(1-6): 233-243.
doi: 10.1080/00986448708960487
[13] MATTEO A, JOSEPH B P, PHILIP B C. Absolute alchemical free energy calculations for ligand binding: a beginner's guide[J]. Methods in Molecular Biology, 2018, 1762:199-232.
[14] VAN DER SPOEL D, LINDAHL E, HESS B, et al. Gromacs: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718.
doi: 10.1002/(ISSN)1096-987X
[15] JORGENSEN W L, MAXWELL D S, TIRADORIVERS J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236.
doi: 10.1021/ja9621760
[16] LU T, CHEN F. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
doi: 10.1002/jcc.v33.5
[17] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Abinitio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627.
doi: 10.1021/j100096a001
[18] HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies[J]. Theoretica Chimica Acta, 1973, 28(3): 213-222.
doi: 10.1007/BF00533485
[19] BAYLY C I, CIEPLAK P, CORNELL W D, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model[J]. Journal of Physical Chemistry, 1993, 97(40): 10269-10280.
doi: 10.1021/j100142a004
[20] HARRIS J G, YUNG K H. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. The Journal of Physical Chemistry, 1995, 99(31): 12021-12024.
doi: 10.1021/j100031a034
[21] SILVIO P, ENRICO B, GIORGIA B, et al. First-principle-based MD description of azobenzene molecular rods[J]. Theoretical Chemistry Accounts, 2012, 131(10): 1274.
doi: 10.1007/s00214-012-1274-z
[22] GOGA N, RZEPIELA A J, DE VRIES A H, et al. Efficient algorithms for langevin and DPD dynamics[J]. Journal of Chemical Theory and Computation, 2012, 8(10): 3637-3649.
doi: 10.1021/ct3000876
[23] MARTYNA G J, TUCKERMAN M E, TOBIAS D J, et al. Explicit reversible integrators for extended systems dynamics[J]. Molecular Physics, 1996, 87(5): 1117-1157.
doi: 10.1080/00268979600100761
[24] DARDEN T, YORK D, PEDERSEN L. Particle mesh ewald: an N.log(N) method for ewald sums in large systems[J]. Journal of Chemical Physics, 1993, 98(12): 10089-10092.
[25] PARRINELLO M, RAHMAN A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190.
doi: 10.1063/1.328693
[26] HESS B, BEKKER H, BERENDSEN H J C, et al. Lincs: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997, 18(12): 1463-1472.
doi: 10.1002/(ISSN)1096-987X
[27] FRANK N. Software update: the ORCA program system, version 4.0[J]. Wiley Interdisciplinary Reviews-Computational Molecular Science, 2018, 8(1): 1327.
[28] HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics & Modelling, 1996, 14(1): 33-38.
[29] EVANS D J, HOLIAN B L. The nose-hoover thermostat[J]. The Journal of Chemical Physics, 1985, 83(8): 4069-4074.
doi: 10.1063/1.449071
[30] BECKE A D A. Multicenter numerical-integration scheme for polyatomic-molecules[J]. Journal of Chemical Physics, 1988, 88(4): 2547-2553.
[31] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305.
doi: 10.1039/b508541a
[32] EIKE C, CHRISTOPH B, STEFAN G. Extension of the D3 dispersion coefficient model[J]. Journal of Chemical Physics, 2017, 147(3): 034112.
doi: 10.1063/1.4993215
[33] WEIGEND F. Accurate coulomb-fitting basis sets for H to Rn[J]. Physical Chemistry Chemical Physics, 2006, 8(9): 1057-1065.
doi: 10.1039/b515623h
[34] ERIN J R, SHAHAR K, PAULA M S, et al. Revealing noncovalent interactions[J]. Journal of the American Chemical Society, 2010, 132(18): 6498-6506.
doi: 10.1021/ja100936w
[35] INGROSSO F, RUIZ-LOPEZ M F. Modeling solvation in supercritical CO2[J]. Chemphyschem, 2017, 18(19): 2560-2572.
doi: 10.1002/cphc.v18.19
[36] ETIENNE G, THIERRY T, JEAN D M, et al. Structure-property relationships in CO2-philic (Co)polymers: phase behavior, self-assembly, and stabilization of water/CO2 emulsions[J]. Chemical Reviews, 2016, 116(7): 4125-4169.
doi: 10.1021/acs.chemrev.5b00420
[37] 李胜男, 赵玉萍, 郑环达, 等. 超临界CO2流体中分散染料溶解度研究进展[J]. 精细化工, 2020, 37(8): 1533-1540.
LI Shengnan, ZHAO Yuping, ZHENG Huanda, et al. Research progress on solubility of disperse dyes in supercritical CO2 fluid[J]. Fine Chemical Industry, 2020, 37(8): 1533-1540.
[38] JULIEN J, HASSAN A, MARKUS B, et al. Facile synjournal of 1-butylamino-and 1,4-bis(butylamino)-2-alkyl-9,10-anthraquinone dyes for improved supercritical carbon dioxide dyeing[J]. Dyes and Pigments, 2020, 173:107991.
doi: 10.1016/j.dyepig.2019.107991
[39] RAI S K, GUNNAM A, MANNAVA M K C, et al. Improving the dissolution rate of the anticancer drug dabrafenib[J]. Crystal Growth & Design, 2020, 20(2): 1035-1046.
doi: 10.1021/acs.cgd.9b01365
[1] WANG Chenglong, LI Lixin, WU Shaoming, CHAI Liqin, ZHOU Lan. Effect of dyeing promoter on dyeing kinetics and thermodynamics of polybutylene succinate fiber dyeing with disperse dye [J]. Journal of Textile Research, 2022, 43(01): 147-152.
[2] PAN Yile, QIAN Liying, XU Jigang, HE Beihai, LI Junrong. Analysis on factors influencing solution of Lyocell fiber spinning pulp [J]. Journal of Textile Research, 2021, 42(10): 27-33.
[3] QIU Jingsi, LIU Yue. Research progress in superfine dispersion of disperse dyes and its effect on particle-size [J]. Journal of Textile Research, 2021, 42(08): 194-201.
[4] XU Baolü, WU Wei, ZHONG Yi, XU Hong, MAO Zhiping. Simulation study on effect of organic solvents on dispersion and hydrolytic stability of liquid reactive dyes [J]. Journal of Textile Research, 2021, 42(02): 113-121.
[5] WANG Chunyi, WU Wei, WANG Jian, XU Hong, MAO Zhiping. Molecular dynamics simulation of solubility of C.I. Disperse Brown 19 in supercritical CO2 and water [J]. Journal of Textile Research, 2020, 41(09): 95-101.
[6] WU Wei, CHEN Xiaowen, ZHONG Yi, XU Hong, MAO Zhiping. Role of sodium sulfate in low add-on pad-cure-steam reactive dyeing process [J]. Journal of Textile Research, 2020, 41(05): 85-93.
[7] WANG Xiaoyan, DU Jinmei, PENG Lingqi, JING Lili, XU Changhai. Alkali reduction and one-bath-one-step process for dyeing polyester knitted fabric [J]. Journal of Textile Research, 2020, 41(01): 80-87.
[8] LIU Yue, MO Linxiang, CHEN Feng. Compatibility and dyeing properties of blending black disperse dyes [J]. Journal of Textile Research, 2019, 40(12): 63-67.
[9] HU Jinhua, YAN Jun, LI Hong, PENG Jianjun, ZHENG Laijiu, ZHENG Huanda, HE Tingting. Measurement and model fitting for solubility of Disperse Red 11 in supercritical CO2 [J]. Journal of Textile Research, 2019, 40(08): 80-84.
[10] SHEN Yanqin, YANG Shu, WU Hailiang, WANG Zhongliang. Research progress of medium and low temperature water-soluble textile starch size [J]. Journal of Textile Research, 2019, 40(06): 142-151.
[11] AI Li, ZHU Yawei. Synthesis of binder and application in polyester fabric with micro-water printing of disperse blue 79 [J]. Journal of Textile Research, 2019, 40(06): 50-57.
[12] QIAN Lumin, ZHANG Bin. Preparation and characterization of soluble hemostatic medical cotton gauze [J]. Journal of Textile Research, 2019, 40(05): 102-106.
[13] WU Qiqi, LI Min, LIU Yining, WANG Lejun, ZHANG Liping, FU Shaohai. Dyeing properties of polylactic acid fabric by carrier dyeing method [J]. Journal of Textile Research, 2019, 40(01): 79-83.
[14] . Ultralow pollution micro-printing method based on liquid disperse dyes [J]. Journal of Textile Research, 2018, 39(09): 77-83.
[15] . Effect of crystal form on dyeing behavior of disperse dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[8] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[9] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[10] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .