Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 174-179.doi: 10.13475/j.fzxb.20210905206

• Comprehensive Review • Previous Articles     Next Articles

Research progress of artificial spider silk and imitation spider silk fiber

WANG Songli1, WANG Meilin1, ZHOU Xiang1(), LIU Zunfeng2,3   

  1. 1. School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
    2. College of Chemistry, Nankai University, Tianjin 300110, China
    3. College of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China
  • Received:2021-09-15 Revised:2021-10-09 Online:2021-12-15 Published:2021-12-29
  • Contact: ZHOU Xiang E-mail:stephanie055@163.com

Abstract:

Spider silks have been received much attention from researchers due to their excellent mechanical properties and good biocompatibility. Different from the silk, the spider silk is difficult to be commercially produced in a large scale, as the spiders kill each other in large-scale breeding. Therefore, the development of artificial spider silk and imitation spider silk fibers have become an effective method to solve the above problems. In order to better understand the nature of the strength and toughness of spider silk, the structure of nature spider silk was reviewed, including the primary and β-crystal network (nanofibril) structure and formation process. The progress in the preparation of artificial spider silk and imitation spider silk fibers, including polypeptides, recombinant spider fibrous protein, polymer materials and carbon nanotube yarns and other materials was introduced, which provided reference for further reaearch and large-scale preparation of artificial spider and imitation spider fiber.

Key words: spider silk, artificial spider silk, imitation spider silk fiber, mechanical property, structure of spider silk

CLC Number: 

  • TS102.3

Fig.1

Classification of spider silk"

Fig.2

Structure diagram of nano fishing net structure of spider silk and formation of β-crystal"

Fig.3

Preparation of hydrogel fibres. (a) VSNP formation and free radical polymerization;(b) Forming process of single fiber by drawing"

Fig.4

Schematic illustration of preparation process and network microstructure of PVA/Alg/HAP hybrid macrofiber"

[1] PORTER D, GUAN J, VOLLRATH F. Spider silk: super material or thin fibre?[J]. Advanced Materials, 2013, 25(9):1275-1279.
doi: 10.1002/adma.v25.9
[2] HEIM M, KEERL D, SCHEIBEL T. Spider silk: from soluble protein to extraordinary fiber[J]. Angewandte Chemie International Edition, 2009, 48(20):3584-3596.
doi: 10.1002/anie.v48:20
[3] KLUGE J A, RABOTYAGOVA O, LEISK G G, et al. Spider silks and their applications[J]. Trends in Biotechnol, 2008, 26(5):244-251.
doi: 10.1016/j.tibtech.2008.02.006
[4] LEWIS R V. Spider silk: ancient ideas for new biomaterials[J]. Chemical Reviews, 2006, 106(9):3762-3774.
doi: 10.1021/cr010194g
[5] GU Y, YU S, MOU J, et al. Research progress on the collaborative drag reduction effect of polymers and surfactants[J]. Materials, 2020, 13(2):444.
doi: 10.3390/ma13020444
[6] VOLLRATH F, KNIGHT D. Liquid crystalline spinning of spider silk[J]. Nature, 2001, 410(6828):541-548.
doi: 10.1038/35069000
[7] HE Q, YU M, LI Y, et al. Adhesion characteristics of a novel synthetic polydimethylsiloxane for bionic adhesive pads[J]. Journal of Bionic Engineering, 2014, 11(3):371-377.
doi: 10.1016/S1672-6529(14)60050-0
[8] VOLLRATH F, PORTER D. Spider silk as archetypal protein elastomer[J]. Soft Matter, 2006, 2(5):377-385.
doi: 10.1039/b600098n
[9] 张鸿昊, 林乃波, 刘向阳. 蚕丝和蜘蛛丝多级结构对力学性能的影响[J]. 功能高分子学报, 2018, 31(6):501-512.
ZHANG Honghao, LIN Naibo, LIU Xiangyang. Effect of multi-level structure of silk and spider silk on mechanical properties[J]. Journal of Functional Polymers, 2018, 31(6):501-512.
[10] AGNARSSON I, KUNTNER M, BLACKLEDGE T A. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider[J]. PLoS One, 2010, 5(9):11234.
[11] 赵爱春, 夏庆友, 向仲怀, 等. 超级纤维蜘蛛丝的研究动向[J]. 蚕学通讯, 2007, 27(2):28-34.
ZHAO Aichun, XIA Qingyou, XIANG Zhonghai, et al. Research trend in superfiber spider silks[J]. Newsletter of Sericultural Science, 2007, 27(2):28-34.
[12] EISOLDT L, SMITH A, SCHEIBEL T. Decoding the secrets of spider silk[J]. Materials Today, 2011, 14(3):80-86.
doi: 10.1016/S1369-7021(11)70057-8
[13] AYOUB N A, GARB J E, TINGHITELLA R M, et al. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes[J]. PLoS One, 2007, 2(6):514.
[14] SMITH D M, SMITH A S, LEWIS R V, et al. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins[J]. Biomacromolecules, 2005, 6:3152-3159.
doi: 10.1021/bm050472b
[15] CHALLIS R J, GOODACRE S L, HEWITT G M. Evolution of spider silks: conservation and diversification of the C-terminus[J]. Insect Molecular Biology, 2006, 15(1):45-56.
doi: 10.1111/imb.2006.15.issue-1
[16] SPONNER A, UNGER E, GROSSE F, et al. Differential polymerization of the two main protein components of dragline silk during fibre spinning[J]. Nature Materials, 2005, 4(10):772-775.
doi: 10.1038/nmat1493
[17] HAYASHI C Y, SHIPLEY N H, LEWIS R V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins[J]. International Journal of Biological Macromolecules, 1999, 24(2/3):271-275.
doi: 10.1016/S0141-8130(98)00089-0
[18] CRAIG H C, PIORKOWSKI D, NAKAGAWA S, et al. Meta-analysis reveals materiomic relationships in major ampullate silk across the spider phylogeny[J]. Journal of the Royal Society Interface, 2020, 17(170):20200471.
doi: 10.1098/rsif.2020.0471
[19] MALAY A D, SUZUKI T, KATASHIMA T, et al. Spider silk self-assembly via modular liquid-liquid phase separation and nanofibrillation[J]. Science Advances, 2020. DOI: 10.1126/sciadv.abb6030.
doi: 10.1126/sciadv.abb6030
[20] KONO N, NAKAMURA H, MORI M, et al. Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(31):2107065118.
[21] LIU R, DENG Q, YANG Z, et al. 'Nano-fishnet' structure making silk fibers tougher[J]. Advanced Functional Materials, 2016, 26(30):5534-5541.
doi: 10.1002/adfm.201600813
[22] LI S F, MCGHIE A J, TANG S L. New internal structure of spider dragline silk revealed by atomic forcemicroscopy[J]. Biophysical Journal, 1994, 66(4):1209-1212.
doi: 10.1016/S0006-3495(94)80903-8
[23] SPONNER A, VATER W, MONAJEMBASHI S, et al. Composition and hierarchical organisation of a spider silk[J]. PLoS One, 2007, 2(10):998.
[24] YAZAWA K, MALAY A D, MASUNAGA H, et al. Role of skin layers on mechanical properties and supercontraction of spider dragline silk fiber[J]. Macromolecular Bioscience, 2019, 19(3):1800220.
doi: 10.1002/mabi.v19.3
[25] DINJASKI N, KAPLAN D L. Recombinant protein blends: silk beyond natural design[J]. Current Opinion in Biotechnology, 2016, 39:1-7.
doi: 10.1016/j.copbio.2015.11.002
[26] ANDERSSON M, JIA Q, ABELLA A, et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin[J]. Nature Chemical Biology, 2017, 13(3):262-264.
doi: 10.1038/nchembio.2269
[27] ZHU H, SUN Y, YI T, et al. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process[J]. Biochimie, 2020, 175:77-84.
doi: 10.1016/j.biochi.2020.05.003
[28] PENG Q, ZHANG Y, LU L, et al. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip[J]. Scientific Reports, 2016, 6:36473-36483.
doi: 10.1038/srep36473
[29] SCHMUCK B, GRECO G, BARTH A, et al. High-yield production of a super-soluble miniature spidroin for biomimetic high-performance materials[J]. Materials Today, 2021.DOI: 10.1016/j.mattod.2021.07.020.
doi: 10.1016/j.mattod.2021.07.020
[30] TSUCHIYA K, NUMATA K. Chemical synjournal of multiblock copolypeptides inspired by spider dragline silk proteins[J]. ACS Macro Letters, 2017, 6(2):103-106.
doi: 10.1021/acsmacrolett.7b00006
[31] GU L, JIANG Y, HU J. Scalable spider-silk-like supertough fibers using a pseudoprotein polymer[J]. Advanced Materials, 2019, 31(48):1904311.
doi: 10.1002/adma.v31.48
[32] DOU Y, WANG Z P, HE W Q, et al. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres[J]. Nature Communications, 2019, 10(1):5293.
doi: 10.1038/s41467-019-13257-4
[33] CHU C K, JOSEPH A J, LIMJOCO M D, et al. Chemical tuning of fibers drawn from extensible hyaluronic acid networks[J]. Journal of the American Chemical Society, 2020, 142(46):19715-19721.
doi: 10.1021/jacs.0c09691
[34] ZHAO X, CHEN F, LI Y, et al. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment[J]. Nature Communications, 2018, 9(1):3579.
doi: 10.1038/s41467-018-05904-z
[35] YU Y, HE Y, MU Z, et al. Biomimetic mineralized organic-inorganic hybrid macrofiber with spider silk-like supertoughness[J]. Advanced Functional Materials, 2019, 30(6):1908556.
doi: 10.1002/adfm.v30.6
[36] KIM H, JANG Y, LEE D Y, et al. Bio-inspired stretchable and contractible tough fiber by the hybridization of GO/MWNT/polyurethane[J]. ACS Applied Materials & Interfaces, 2019, 11(34):31162-31168.
[37] KIM S H, KWON C H, PARK K, et al. Bio-inspired, moisture-powered hybrid carbon nanotube yarn mus-cles[J]. Scientific Reports, 2016, 6:23016.
doi: 10.1038/srep23016
[38] ZHAO C, ZHANG P, SHI R, et al. Super-tough and strong nanocomposite fibers by flow-induced alignment of carbon nanotubes on grooved hydrogel surfaces[J]. Science China Materials, 2019, 62(9):1332-1340.
doi: 10.1007/s40843-019-9421-y
[1] SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88.
[2] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[3] LU Zhenqian, YANG Yaru, XUN Yong. Research review of fiber effect on properties of cement-based composite [J]. Journal of Textile Research, 2021, 42(04): 177-183.
[4] ZUO Yajun, CAI Yun, WANG Lei, GAO Weidong. Influence of ply number of cotton yarns on fabrics performance [J]. Journal of Textile Research, 2021, 42(04): 74-79.
[5] HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve [J]. Journal of Textile Research, 2021, 42(02): 74-79.
[6] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[7] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[8] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[9] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[10] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[11] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[12] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[13] LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14.
[14] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[15] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[7] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[8] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[9] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .
[10] LUO Jun;FEI Wan-chun. Distribution of the filament number of each cocoon layer in raw silk threads[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 1 -4 .