Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 174-179.doi: 10.13475/j.fzxb.20210905206
• Comprehensive Review • Previous Articles Next Articles
WANG Songli1, WANG Meilin1, ZHOU Xiang1(), LIU Zunfeng2,3
CLC Number:
[1] |
PORTER D, GUAN J, VOLLRATH F. Spider silk: super material or thin fibre?[J]. Advanced Materials, 2013, 25(9):1275-1279.
doi: 10.1002/adma.v25.9 |
[2] |
HEIM M, KEERL D, SCHEIBEL T. Spider silk: from soluble protein to extraordinary fiber[J]. Angewandte Chemie International Edition, 2009, 48(20):3584-3596.
doi: 10.1002/anie.v48:20 |
[3] |
KLUGE J A, RABOTYAGOVA O, LEISK G G, et al. Spider silks and their applications[J]. Trends in Biotechnol, 2008, 26(5):244-251.
doi: 10.1016/j.tibtech.2008.02.006 |
[4] |
LEWIS R V. Spider silk: ancient ideas for new biomaterials[J]. Chemical Reviews, 2006, 106(9):3762-3774.
doi: 10.1021/cr010194g |
[5] |
GU Y, YU S, MOU J, et al. Research progress on the collaborative drag reduction effect of polymers and surfactants[J]. Materials, 2020, 13(2):444.
doi: 10.3390/ma13020444 |
[6] |
VOLLRATH F, KNIGHT D. Liquid crystalline spinning of spider silk[J]. Nature, 2001, 410(6828):541-548.
doi: 10.1038/35069000 |
[7] |
HE Q, YU M, LI Y, et al. Adhesion characteristics of a novel synthetic polydimethylsiloxane for bionic adhesive pads[J]. Journal of Bionic Engineering, 2014, 11(3):371-377.
doi: 10.1016/S1672-6529(14)60050-0 |
[8] |
VOLLRATH F, PORTER D. Spider silk as archetypal protein elastomer[J]. Soft Matter, 2006, 2(5):377-385.
doi: 10.1039/b600098n |
[9] | 张鸿昊, 林乃波, 刘向阳. 蚕丝和蜘蛛丝多级结构对力学性能的影响[J]. 功能高分子学报, 2018, 31(6):501-512. |
ZHANG Honghao, LIN Naibo, LIU Xiangyang. Effect of multi-level structure of silk and spider silk on mechanical properties[J]. Journal of Functional Polymers, 2018, 31(6):501-512. | |
[10] | AGNARSSON I, KUNTNER M, BLACKLEDGE T A. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider[J]. PLoS One, 2010, 5(9):11234. |
[11] | 赵爱春, 夏庆友, 向仲怀, 等. 超级纤维蜘蛛丝的研究动向[J]. 蚕学通讯, 2007, 27(2):28-34. |
ZHAO Aichun, XIA Qingyou, XIANG Zhonghai, et al. Research trend in superfiber spider silks[J]. Newsletter of Sericultural Science, 2007, 27(2):28-34. | |
[12] |
EISOLDT L, SMITH A, SCHEIBEL T. Decoding the secrets of spider silk[J]. Materials Today, 2011, 14(3):80-86.
doi: 10.1016/S1369-7021(11)70057-8 |
[13] | AYOUB N A, GARB J E, TINGHITELLA R M, et al. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes[J]. PLoS One, 2007, 2(6):514. |
[14] |
SMITH D M, SMITH A S, LEWIS R V, et al. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins[J]. Biomacromolecules, 2005, 6:3152-3159.
doi: 10.1021/bm050472b |
[15] |
CHALLIS R J, GOODACRE S L, HEWITT G M. Evolution of spider silks: conservation and diversification of the C-terminus[J]. Insect Molecular Biology, 2006, 15(1):45-56.
doi: 10.1111/imb.2006.15.issue-1 |
[16] |
SPONNER A, UNGER E, GROSSE F, et al. Differential polymerization of the two main protein components of dragline silk during fibre spinning[J]. Nature Materials, 2005, 4(10):772-775.
doi: 10.1038/nmat1493 |
[17] |
HAYASHI C Y, SHIPLEY N H, LEWIS R V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins[J]. International Journal of Biological Macromolecules, 1999, 24(2/3):271-275.
doi: 10.1016/S0141-8130(98)00089-0 |
[18] |
CRAIG H C, PIORKOWSKI D, NAKAGAWA S, et al. Meta-analysis reveals materiomic relationships in major ampullate silk across the spider phylogeny[J]. Journal of the Royal Society Interface, 2020, 17(170):20200471.
doi: 10.1098/rsif.2020.0471 |
[19] |
MALAY A D, SUZUKI T, KATASHIMA T, et al. Spider silk self-assembly via modular liquid-liquid phase separation and nanofibrillation[J]. Science Advances, 2020. DOI: 10.1126/sciadv.abb6030.
doi: 10.1126/sciadv.abb6030 |
[20] | KONO N, NAKAMURA H, MORI M, et al. Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(31):2107065118. |
[21] |
LIU R, DENG Q, YANG Z, et al. 'Nano-fishnet' structure making silk fibers tougher[J]. Advanced Functional Materials, 2016, 26(30):5534-5541.
doi: 10.1002/adfm.201600813 |
[22] |
LI S F, MCGHIE A J, TANG S L. New internal structure of spider dragline silk revealed by atomic forcemicroscopy[J]. Biophysical Journal, 1994, 66(4):1209-1212.
doi: 10.1016/S0006-3495(94)80903-8 |
[23] | SPONNER A, VATER W, MONAJEMBASHI S, et al. Composition and hierarchical organisation of a spider silk[J]. PLoS One, 2007, 2(10):998. |
[24] |
YAZAWA K, MALAY A D, MASUNAGA H, et al. Role of skin layers on mechanical properties and supercontraction of spider dragline silk fiber[J]. Macromolecular Bioscience, 2019, 19(3):1800220.
doi: 10.1002/mabi.v19.3 |
[25] |
DINJASKI N, KAPLAN D L. Recombinant protein blends: silk beyond natural design[J]. Current Opinion in Biotechnology, 2016, 39:1-7.
doi: 10.1016/j.copbio.2015.11.002 |
[26] |
ANDERSSON M, JIA Q, ABELLA A, et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin[J]. Nature Chemical Biology, 2017, 13(3):262-264.
doi: 10.1038/nchembio.2269 |
[27] |
ZHU H, SUN Y, YI T, et al. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process[J]. Biochimie, 2020, 175:77-84.
doi: 10.1016/j.biochi.2020.05.003 |
[28] |
PENG Q, ZHANG Y, LU L, et al. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip[J]. Scientific Reports, 2016, 6:36473-36483.
doi: 10.1038/srep36473 |
[29] |
SCHMUCK B, GRECO G, BARTH A, et al. High-yield production of a super-soluble miniature spidroin for biomimetic high-performance materials[J]. Materials Today, 2021.DOI: 10.1016/j.mattod.2021.07.020.
doi: 10.1016/j.mattod.2021.07.020 |
[30] |
TSUCHIYA K, NUMATA K. Chemical synjournal of multiblock copolypeptides inspired by spider dragline silk proteins[J]. ACS Macro Letters, 2017, 6(2):103-106.
doi: 10.1021/acsmacrolett.7b00006 |
[31] |
GU L, JIANG Y, HU J. Scalable spider-silk-like supertough fibers using a pseudoprotein polymer[J]. Advanced Materials, 2019, 31(48):1904311.
doi: 10.1002/adma.v31.48 |
[32] |
DOU Y, WANG Z P, HE W Q, et al. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres[J]. Nature Communications, 2019, 10(1):5293.
doi: 10.1038/s41467-019-13257-4 |
[33] |
CHU C K, JOSEPH A J, LIMJOCO M D, et al. Chemical tuning of fibers drawn from extensible hyaluronic acid networks[J]. Journal of the American Chemical Society, 2020, 142(46):19715-19721.
doi: 10.1021/jacs.0c09691 |
[34] |
ZHAO X, CHEN F, LI Y, et al. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment[J]. Nature Communications, 2018, 9(1):3579.
doi: 10.1038/s41467-018-05904-z |
[35] |
YU Y, HE Y, MU Z, et al. Biomimetic mineralized organic-inorganic hybrid macrofiber with spider silk-like supertoughness[J]. Advanced Functional Materials, 2019, 30(6):1908556.
doi: 10.1002/adfm.v30.6 |
[36] | KIM H, JANG Y, LEE D Y, et al. Bio-inspired stretchable and contractible tough fiber by the hybridization of GO/MWNT/polyurethane[J]. ACS Applied Materials & Interfaces, 2019, 11(34):31162-31168. |
[37] |
KIM S H, KWON C H, PARK K, et al. Bio-inspired, moisture-powered hybrid carbon nanotube yarn mus-cles[J]. Scientific Reports, 2016, 6:23016.
doi: 10.1038/srep23016 |
[38] |
ZHAO C, ZHANG P, SHI R, et al. Super-tough and strong nanocomposite fibers by flow-induced alignment of carbon nanotubes on grooved hydrogel surfaces[J]. Science China Materials, 2019, 62(9):1332-1340.
doi: 10.1007/s40843-019-9421-y |
[1] | SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88. |
[2] | ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191. |
[3] | LU Zhenqian, YANG Yaru, XUN Yong. Research review of fiber effect on properties of cement-based composite [J]. Journal of Textile Research, 2021, 42(04): 177-183. |
[4] | ZUO Yajun, CAI Yun, WANG Lei, GAO Weidong. Influence of ply number of cotton yarns on fabrics performance [J]. Journal of Textile Research, 2021, 42(04): 74-79. |
[5] | HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve [J]. Journal of Textile Research, 2021, 42(02): 74-79. |
[6] | SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112. |
[7] | SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77. |
[8] | WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36. |
[9] | LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41. |
[10] | PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7. |
[11] | ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(08): 9-14. |
[12] | ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31. |
[13] | LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14. |
[14] | LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173. |
[15] | WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14. |
|