Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 15-20.doi: 10.13475/j.fzxb.20210905306

• Fiber Materials • Previous Articles     Next Articles

Carbon fiber reinforced epoxy based vitrimer composite material closed-loop recycling

LI Bo1,2, FAN Wei1,2(), GAO Xingzhong1,2, WANG Shujuan3, LI Zhihu1,2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    3. School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • Received:2021-09-15 Revised:2021-11-05 Online:2022-01-15 Published:2022-01-28
  • Contact: FAN Wei E-mail:fanwei@xpu.edu.cn

Abstract:

In order to solve the problem of low recycling efficiency and single recycling component of continuous carbon fiber reinforced resin matrix composite material (CFRP), methyl tetrahydrophthalic anhydride, tetrahydrophthalic anhydride, catalyst zinc acetylacetonate and epoxy resin were used to prepare a high-performance epoxy based vitrimer resin and its composite material. A closed-loop recycling was conducted involving the transesterification reaction of ethylene glycol (EG) at 180 ℃. Ethylene glycol participates in the transesterification reaction, and the composite material is recovered in a closed loop at 180 ℃. The apparent structure, thermal stability and mechanical properties of raw resin, carbon fiber and CFRP, recovered resin, carbon fiber and CFRP prepared from recovered resin and recovered carbon fiber were characterized and analyzed. The results show that the recoverying method can completely recover and reprocess the resin and carbon fiber of the composite material. After recycling, the retention rate of the tensile strength of the resin is 90.1%, the retention rate of the tensile strength of the carbon fiber monofilament is 98.9%, and the retention rate of the flexural strength and shear strength of CFRP are 86.2% and 86.7%, respectively.

Key words: carbon fiber, composite material, carbon fiber reinforced resin matrix composite material, closed-loop recycling, reprocessing

CLC Number: 

  • TB332

Fig.1

Curing process of epoxy based vitrimer. (a) Catalysis, ring opening reaction;(b) Ring opening reaction;(c) Transesterification reaction"

Fig.2

Closed-loop recycling flow chart of composite material"

Fig.3

SEM images of carbon fiber. (a) Raw carbon fiber;(b) Recovered carbon fiber"

Fig.4

Infrared spectra of raw epoxy resin and recovered epoxy resin"

Fig.5

Alcoholysis process of epoxy based vitrimer"

Fig.6

Thermal stability curve of raw carbon fiber and recovered carbon fiber"

Fig.7

Bending stress-strain curve of raw CFRP and recovered CFRP"

Fig.8

Shear stress-strain curve of raw CFRP and recovered CFRP"

Fig.9

Tensile stress-strain curve of raw resin casts and recovered resin casts"

[1] 阮芳涛, 施建, 徐珍珍, 等. 碳纤维增强树脂基复合材料的回收及其再利用研究进展[J]. 纺织学报, 2019, 40(6): 152-157.
RUAN Fangtao, SHI Jian, XU Zhenzhen, et al. Research progress on recycling and reuse of carbon fiber reinforced resin matrix composites[J]. Journal of Textile Research, 2019, 40(6): 152-157.
[2] WITIK R A, TEUSCHER R, MICHAUD V, et al. Carbon fibre reinforced composite waste: an environmental assessrnent of recycling, energyrecovery and landfilling[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49(1): 89-99.
doi: 10.1016/j.compositesa.2013.02.009
[3] JIANG G Z, PICKERING S J, LESTER E H, et al. Decomposition of epoxy resin in supercritical iso-propanol[J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4535-4541.
doi: 10.1021/ie901542z
[4] MARREF M, MIGNARD N, JEGAT C, et al. Epoxy-amine based thermoresponsive networks designed by Diels-Alder reactions[J]. Polymer International, 2013, 62(1): 87-98.
doi: 10.1002/pi.4287
[5] PIMENTA S, PINHO S T. Recycling carbon fibre re-inforced polymers for structural applications: technology review and market outlook[J]. Waste Management, 2011, 31(2): 378-392.
doi: 10.1016/j.wasman.2010.09.019
[6] 陈平, 刘胜平, 王德中. 环氧树脂及其应用[M]. 北京: 化学工业出版社, 2011:70-73.
CHEN Ping, LIU Shengping, WANG Dezhong. Epoxy resin and its application[M]. Beijing: Chemical Industry Press, 2011:70-73.
[7] PEI Z Q, YANG Y, CHEN Q M, et al. Mouldable liquid crstalline elastomer actuators with exchangeable covalent bonds[J]. Nat Mater, 2014(13): 36-41.
[8] 张希. 可多次塑型、易修复及耐低温的三维动态高分子结构[J]. 高分子学报, 2016(6): 685-687.
ZHANG Xi. A three-dimensional dynamic polymer structure that can be molded repeatedly, easily repaired and resistant to low temperatures[J]. Acta Polymerica Sinica, 2016(6): 685-687.
[9] WANG S J, WANG B, ZHANG X T, et al. Fully recyclable and reprocessable polystyrene-based vitrimers with improved thermal stability and mechanical properties through nitrogen-coordinating cyclic boronic ester bonds[J]. Applied Surface Science, 2021, 570:151157.
doi: 10.1016/j.apsusc.2021.151157
[10] MAEDA T, OTSUKA H, TAKAHARA A. Dynamic cov alent polymers: reorganizable polymers with dy namic covalent bonds[J]. Progress in Polymer Science, 2009(34): 581-604.
[11] SI H W, ZHOU L, WU Y P, et al. Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks[J]. Composites Part B: Engineering, 2020(199): 108278.
[12] 金鑫, 隋刚, 杨小平. T700碳纤维/环氧树脂复合材料热降解实验研究[J]. 玻璃钢/复合材料, 2017(11): 56-61.
JIN Xin, SUI Gang, YANG Xiaoping. Experimental study on thermal degradation of T700 carbon fiber/epoxy resin composites[J]. FRP/Composite Materials, 2017(11): 56-61.
[13] DANG W R, KUBOUCHI M, YAMAMOTO S, et al. An approach to chemical reycling of epoxy resin cured with amine using acid[J]. Polymer, 2002, 43(10): 2953-2958.
doi: 10.1016/S0032-3861(02)00100-3
[14] WANG S J, XING X L, ZHANG X T, et al. Room-temperature fully recyclable carbon fibre reinforced phenolic composites through dynamic covalent boronic ester bonds[J]. Journal of Materials Chemistry A, 2018, 6(23): 10868-10878.
doi: 10.1039/C8TA01801D
[15] 王艳萍, 刘晓琴, 井新利, 等. 环氧树脂类玻璃高分子研究进展[J]. 化学通报, 2021, 84(4): 313-321.
WANG Yanping, LIU Xiaoqin, JING Xinli, et al. Research progress in epoxy vitrimer[J]. Chemical Bulletin, 2021, 84(4): 313-321.
[16] 司鸿玮, 陈茂, 周琳, 等. 可交换酯键的密度对环氧类玻璃高分子动态性能的影响[J]. 西南科技大学学报, 2020, 35(3): 1-7.
SI Hongwei, CHEN Mao, ZHOU Lin, et al. Impact of the density of exchangeable ester bonds on the dynamic properties of epoxy vitrimers[J]. Journal of Southwest University of Science and Technology, 2020, 35(3): 1-7.
[17] BOWMAN C N, KLOXIN C J. Covalent adaptable net works: reversible bond structures incorporated in polymer networks[J]. Angewandte Chemie International Edition, 2012, 51(18): 4272-4274.
doi: 10.1002/anie.201200708
[18] 施晓霞, 李泽宏, 顾伯洪. 单向复合材料弯曲疲劳性能[J]. 纺织学报, 2002, 23(5): 44-44.
SHI Xiaoxia, LI Zehong, GU Bohong. Bending fatigue properties of unidirectional composite materials[J]. Journal of Textile Research, 2002, 23(5): 44-44.
[19] ZHANG X Q, FAN X Y, YAN C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials Interfaces, 2012, 4(3): 1543-1552.
doi: 10.1021/am201757v
[1] LÜ Lihua, LI Zhen, ZHANG Duoduo. Preparation and properties of sound absorbing composites based on use of waste straw/polycaprolactone [J]. Journal of Textile Research, 2022, 43(01): 28-35.
[2] CHEN Hainiao, TIAN Wei, JIN Xiaoke, ZHANG Hongxia, LI Yanqing, ZHU Chengyan. Analysis on cross-sectional structure of moso bamboo using three-dimensional microscope imaging [J]. Journal of Textile Research, 2021, 42(12): 49-54.
[3] LÜ Wentao, LIN Qiqi, ZHONG Jiaying, WANG Chengqun, XU Weiqiang. Research progress of image processing technology for fabric defect detection [J]. Journal of Textile Research, 2021, 42(11): 197-206.
[4] WEI Xiaoling, LI Ruixue, QIN Zhuo, HU Xinrong, LIN Fusheng, LIU Lingshan, GONG Xiaozhou. Key technologies for formation of warp T-shape preforms [J]. Journal of Textile Research, 2021, 42(11): 51-55.
[5] SONG Xueyang, ZHANG Yan, XU Chenggong, WANG Ping, RUAN Fangtao. Mechanical properties of carbon fiber/polypropylene/polylactic acid reinforced composites [J]. Journal of Textile Research, 2021, 42(11): 84-88.
[6] REN Libing, CHEN Li, JIAO Wei. Microstructure characterization of multi-layer interlocked woven preforms based on quadratic functions [J]. Journal of Textile Research, 2021, 42(08): 76-83.
[7] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[8] YANG Zhi, LIU Chengkun, WU Hong, MAO Xue. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2021, 42(07): 54-61.
[9] QIAO Cancan, JIANG Yaming, QI Yexiong, LIN Wenni, ZHANG Ye. Characterization of shock wave propagation in ceramic reinforced weft-knitted biaxial multilayer yarnlining fabric and woven fabrics composites [J]. Journal of Textile Research, 2021, 42(05): 84-89.
[10] ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126.
[11] CHEN Junyan, JU Jingge, DENG Nanping, YANG Qi, CHENG Bowen, KANG Weimin. Application of rabbit hair based hollow carbon fiber in lithium-sulfur battery [J]. Journal of Textile Research, 2021, 42(03): 56-63.
[12] CHENG Lüzhu, WANG Zongqian, WANG Dengfeng, SHEN Jiakun, LI Changlong. Preparation of highly hollow biomass-based activated carbon fiber and its adsorption property to methylene blue [J]. Journal of Textile Research, 2021, 42(02): 129-134.
[13] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[14] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[15] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .
[10] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .