Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (12): 8-15.doi: 10.13475/j.fzxb.20210905908

• Fiber Materials • Previous Articles     Next Articles

Preparation of catkin fiber biochar and its adsorption properties for Cr(VI) in dye wastewater

FU Weikang1, GUO Xiaojie2, PAN Mengtao1, SONG Juyan1, XI Bojun1()   

  1. 1. College of Textile and Garment, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310000,China
  • Received:2021-09-16 Revised:2022-04-28 Online:2022-12-15 Published:2023-01-06
  • Contact: XI Bojun E-mail:xbj@usx.edu.cn

Abstract:

In view of the serious pollution of hexavalent chromium Cr(VI) in acid mordant dye wastewater to water environment, KOH activated biochar (CBK) and NaOH activated biochar (CBN) were prepared by oxygen limiting pyrolysis with catkin fiber. The effects of pH value of a simulated dye waste liquid and dosage of adsorbent and temperature effect on the adsorption treatment of Cr(VI) by catkin fiber biochar were studied by adsorption batch experiment. The adsorption process was fitted by kinetic and thermodynamic models to explore the adsorption and fixation mechanism of Cr(VI) by catkin fiber biochar. The results show that the specific surface area of CBK is significantly larger than that of CBN, and the surface adsorption sites are increased. When the pH value of the solution is 2, the theoretical maximum adsorption capacity of Cr(VI) by CBK and CBN is 82.68 and 47.16 mg/g respectively. The adsorption process conforms to Freundlich thermodynamic model and quasi second-order kinetic model, which means that the adsorption process is mainly multi-molecular layer adsorption, accompanied by chemical adsorption. The adsorption reaction is spontaneous and endothermic, and the increase of temperature can significantly improve the adsorption capacity of catkin fiber biomass carbon for Cr(VI).

Key words: catkin fiber, biochar, heavy metals adsorption, Cr(VI), adsorption mechanism, dye waste liquid treatment

CLC Number: 

  • TS102.9

Fig.1

Iodine adsorption value of biochar prepared at different temperatures"

Fig.2

Infrared spectra of catkin fiber biochar"

Fig.3

XRD patterns of catkin fiber biochar"

Fig.4

SEM images of catkin fiber biochar"

Tab.1

BET test result of catkin fiber biochar"

生物质炭
编号
比表面积/
(m2·g-1)
总孔体积/
(cm3·g-1)
平均孔
径/nm
CBK 211.90 0.13 2.47
CBN 74.40 0.11 6.10

Fig.5

Effect of pH value on Cr(VI) adsorption"

Fig.6

Effect of biochar dosage on Cr(VI) adsorption"

Fig.7

Adsorption kinetic model"

Tab.2

Kinetic fitting constants"

生物质炭
编号
准一级动力学模型 准二级动力学模型
Qe/(mg·g-1) K1/min-1 R2 Qe/(mg·g-1) K2/(g·mg-1·min-1) R2
CBK 75.23 0.023 0.732 7 82.68 0.002 3 0.940 9
CBN 43.68 0.036 0.707 9 47.16 0.001 2 0.925 1

Tab.3

Thermodynamic fitting constants"

生物质炭
编号
Langmuir模型 Freundlich模型
Qm/(mg·g-1) KL/(L·mg-1) R2 KF/(mg1-1/n·L1/n·g-1) n R2
CBK 101.86 0.96 0.579 4 58.17 6.82 0.969 6
CBN 57.73 0.41 0.669 4 28.94 6.22 0.942 1

Fig.8

Adsorption isotherm model"

Fig.9

Effect of temperature on Cr(VI) adsorption"

Fig.10

Thermodynamic fitting curves for Cr(VI) adsorption on CBK. (a) Ce-lnK curve; (b) T-1-lnK0 curve"

Tab.4

Thermodynamic parameters for Cr(VI) adsorption on CBK"

T/℃ ΔG0/
(kJ·mol-1)
ΔH0/
(kJ·mol-1)
ΔS0/
(J·mol-1·K-1)
20 -5.97 24.87 105.13
30 -6.89
40 -8.08
[1] LIN Y, MUNROE P, JOSEPH S, et al. Chemical and structural analysis of enhanced biochars: thermally treated mixtures of biochar, chicken litter, clay and minerals[J]. Chemosphere, 2013, 91(36): 35-40.
doi: 10.1016/j.chemosphere.2012.11.063
[2] ESSANDOH M, KUNWAR B, PITTMAN C U, et al. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis bio-char[J]. Chemical Engineering Journal, 2015, 265:219-227.
doi: 10.1016/j.cej.2014.12.006
[3] 杨萌, 邢海, 闻秀娟, 等. 生物质炭对土壤重金属污染修复作用的研究进展[J]. 贵州农业科学, 2020, 48(4):153-160.
YANG Meng, XING Hai, WEN Xiujuan, et al. Research progress on effects of biochar on remediation of heavy metal contaminated soil[J]. Guizhou Agricultural Sciences, 2020, 48(4): 153-160.
[4] 富生源环保. 2017年中国纺织印染废水处理现状及趋势. [EB/OL]. (2017-05-17). http://www.fushengyuan.com.
FSY Environmental Protection. Current situation and trend of textile printing and dyeing wastewater treatment in China in 2017. [EB/OL]. (2017-05-17). http://www.fushengyuan.com.
[5] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
CAO Xinxin, LI Fuchang. Research progress on adsorption performance of graphene aerogel in waste-water[J]. Materials Reports, 2020, 34(7): 7020-7025.
[6] 陈锋, 马路路, 郭世浩, 等. 硼掺杂石墨烯对废水中铬(VI)的吸附性能及吸附机理研究[J]. 应用化工, 2019, 48(5):1001-1006,1011.
CHEN Feng, MA Lulu, GUO Shihao, et al. Adsorption property and mechanism of chromium (VI) in wastewater boron-doped graphene[J]. Applied Chemical Industry, 2019, 48 (5): 1001-1006,1011.
[7] YANG Guanxi, JIANG Hong. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J]. Water Research, 2014, 48:396-405.
doi: 10.1016/j.watres.2013.09.050
[8] 林烨, 姚路, 吴登鹏, 等. 基于柳絮的生物质活性炭制备及电容性能的研究[J]. 电子元件与材料, 2018, 37(10): 13-21.
LIN Ye, YAO Lu, WU Dengpeng, et al. Preparation and capacitance properties of activated carbon derived from willow catkin for supercapacitors[J]. Electronic Components and Materials, 2018, 37(10): 13-21.
[9] 吕爱超, 刘彦明, 李苗苗, 等. 改性杨絮纤维素对重金属离子的吸附[J]. 大连工业大学学报, 2017, 36(2): 120-123.
LV Aichao, LIU Yanming, LI Miaomiao, et al. Adsorption of heavy metal ions by modified populus cellulose[J]. Journal of Dalian Polytechnic University, 2017, 36(2): 120-123.
[10] 温嘉伟, 王辉, 张浩, 等. 改性棕榈树纤维生物质炭的制备及其对溶液中Pb2+的吸附性能分析[J]. 农业环境科学学报, 2021, 40(5): 1088-1096.
WEN Jiawei, WANG Hui, ZHANG Hao, et al. Preparation of modified palm fiber biochars and their adsorption of Pb2+ in solution[J]. Journal of Agro-Environment Science, 2021, 40(5): 1088-1096.
[11] 陈再明, 方远, 徐义亮, 等. 水稻秸秆生物碳对重金属 Pb2+的吸附作用及影响因素[J]. 环境科学学报, 2012, 32(4): 769-776.
CHEN Zaiming, FANG Yuan, XU Yiliang, et al. Adsorption of Pb2+ by rice straw derived-biochar and its influential factors[J]. Acta Scientiae Circumstantiae, 2012, 32(4) : 769-776.
[12] 唐裕芳, 赵月梅, 李玉芹, 等. 香樟叶生物质炭制备及其吸附孔雀石绿性能研究[J]. 湘潭大学自然科学学报, 2020, 42(1):1-6.
TANG Yufang, ZHAO Yuemei, LI Yuqin, et al. Preparation of bio-carbon from C.Camphora and its adsorption performance for malachite green[J]. Natural Science Journal of Xiangtan University, 2020, 42(1):1-6.
[13] 李荣华, 张增强, 孟昭福, 等. 玉米秸秆对Cr(Ⅵ)的生物吸附及热力学特征研究[J]. 环境科学学报, 2009, 29(7): 1434-1441.
LI Ronghua, ZHANG Zengqiang, MENG Zhaofu, et al. Biosorption of Cr (Ⅵ) by corn stalk biomass: thermodynamics and mechanism[J]. Acta Scientiae Circumstantiae, 2009, 29(7): 1434-1441.
[14] 张亚茹, 张英, 史祥利, 等. pH 对生物质炭吸附诺氟沙星和磺胺甲恶唑的影响[J]. 农业资源与环境学报, 2020, 37(4):552-561.
ZHANG Yaru, ZHANG Ying, SHI Xiangli, et al. Effect of pH on biochar adsorption of norfloxacin and sulfamethoxazole[J]. Journal of Agricultural Resources and Environment, 2020, 37(4):552-561.
[15] BABU N, ASMA K, RAGHUPATHI A, et al. Screening of leather auxiliaries for their role in toxic hexavalent chromium formation in leather-posing potential health hazards to the users[J]. Journal of Cleaner Production, 2005, 13(12): 1189-1195.
doi: 10.1016/j.jclepro.2004.07.003
[16] 傅凯放. 造纸黑液木质素活性炭的制备、表征及吸附应用[D]. 济南: 山东大学, 2018: 46-48.
FU Kaifang. Preparation/Characterization and application of lignin-based activated carbons from black liquor[D]. Ji'nan: Shandong University, 2018: 46-48.
[17] 刘伟, 杨琦, 李博, 等. 磁性石墨烯吸附水中 Cr(Ⅵ)研究[J]. 环境科学, 2015(2) :537-544.
LIU Wei, YANG Qi, LI Bo, et al. Adsorption of Cr(Ⅵ) on magnetic graphene from aqueous solu-tion[J]. Environmental Science, 2015(2) :537-544.
[18] TAN I A, AHMAD A L, HAMEED B H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2, 4, 6-trichlorophenol on oil palm empty fruit bunch-based activated carbon[J]. Journal of Hazardous Materials, 2009, 164(2) :473-482.
doi: 10.1016/j.jhazmat.2008.08.025
[19] WU Jin, ZHU Hongshan, LIU Ge, et al. fabrication of core-shell CMNP@PmPD nanocomposite for efficient As(Ⅴ) adsorption and reduction[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4399-4407.
[20] SONG Wengcheng, LIANG Jun, WEN Tao, et al. Accumulation of Co(II) and Eu(III) by the mycelia of aspergillus niger isolated from radionuclide-contaminated soils[J]. Chemical Engineering Journal, 2016, 304: 186-193.
doi: 10.1016/j.cej.2016.06.103
[1] WANG Shuangshuang, JI Zhihao, SHENG Guodong, JIN Enqi. Dye and heavy metal adsorption performance of zero-valent iron/graphene oxide blend absorbent [J]. Journal of Textile Research, 2022, 43(09): 156-166.
[2] GUAN Binbin, LI Qing, CHEN Linghui, XU Yuting, FAN Zenglu. Fluorescence detection of Cr(VI) from printing and dyeing wastewater by zirconium-organic framework [J]. Journal of Textile Research, 2021, 42(02): 122-128.
[3] . Adsorption mechanism between nano-gold and viscose fiber [J]. Journal of Textile Research, 2018, 39(09): 22-28.
[4] . Adsorption of modified waste cotton to Cu+2 in aqueous solution [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 112-118.
[5] WU Minghua;LIN Heming. Adsorption of syntan on nylon and silk fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(5): 67-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!